옴의 법칙(전력 출력기)

1. 목적

단순한 저항기에서 전류와 전압간의 관계를 이해하고 백열전구의 필라멘트에서 전류와 전압 과의 관계를 이해한다.

2.원리

Ohm은 저항기의 양단에 걸리는 전압(전위차)이 변화할 때, 저항기를 통해 흐르는 전류도 변화한다는 것을 발견했다. 그는 이를 이렇게 표현했다.

$$I = \frac{V}{R}$$

여기서 *I*는 전류, *V*은 전압(전위차) *R*은 저항이다. 전류는 전압과 정비례하고 저항과는 역으로 비례한다. 즉, 전압이 증가함에 따라 전류도 증가한다. 비례 상수는 저항 값이다. 전류가 저항과 역비례하기 때문에, 저항이 증가하면, 전류는 감소한다.

저항기를 거친 전압이 증가함에 따라 전류 대 전압의 그래프가 직선이라면 저항기는 'Ohmic'이다. 이 선의 기울기는 저항 값이다. 전류 대 전압의 그래프가 직선이 아니라면 저 항기는 'non-Ohmic'이다. 예를 들어, 전압이 변할 때 저항이 변화한다면, 전류 대 전압의 그 래프는 그 기울기가 변화하는 곡선으로 나타난다.

어떠한 저항기에서, 저항값은 감지할 수 있을 정도로 변화하지 않는다. 그러나 전구에서, 필 라멘트의 저항은 전구가 열을 받거나 냉각됨에 따라 변화할 것이다. 높은 AC주파수에서, 필 라멘트는 냉각될 시간이 없고 거의 일정 온도에 변화시킬 시간이 있다. 결과적으로, 이 필라 멘트의 저항은 극적으로 변화하며 필라멘트를 통한 전류의 변화는 관찰하기에 흥미롭다. 이 실험의 첫 번째 부분에서는, 단순한 10Ω 저항기에서 전류와 전압간의 관계를 알아볼 것 이다. 두 번째 부분에서는, 작은 전구의 필라멘트에서 전류와 전압의 관계를 알아볼 것이다.

3. 기구 및 장치

3볼트 전구, 패치코드, 저항기, 도입선

4.실험방법

Part A-저항기

Interface 의 'Output' 특징을 이용하여 10Ω 저항기에 전압을 제공하라. *DataStudio*나 *Science Workshop*로 저항기에 걸리는 출력 전압과 저항기를 통과하는 전류를 측정하라.

이 프로그램으로 전류와 전압을 보여라. 전압 대 전류를 그래프로 그려 저항기의 저항값을 확인하라.

PART IA-저항기 : 저항기를 알기 위해 컴퓨터 설치하기

(1) *Science Workshop* interface를 컴퓨터에 연결하고 interface를 켠 후 컴퓨터를 켜라. (2)바나나 플러그 패치 코드를 interface의 'OUTPUT'포트에 연결하라.

(3)다음과 같은 이름의 파일을 열어라 : DataStudio P48 : 옴의법칙(전력 출력기)를 클릭하시 오.

·*DataStudio* 다큐먼트는 Signal Generator 창과 Scope display와 함께 열린다. 다큐먼트는 또한 Workbook display를 갖고 있다. Workbook의 지시를 읽어라.

·Science Workshop 파일을 조정하는 것에 대한 정보를 위해 이 실험의 끝을 참고하라.

·Scope display는 interface의 'Output'에서 10Ω 저항기까지의 전압과 interface로부터 저항기 를 통해 나온 출력 전류를 보여줄 것이다.

·Signal Generator은 60Hz의 삼각파를 발생하도록 설정되어 있다. 또한 'Auto'로 설정 되어 있어 여러분이 데이터 측정을 시작하거나 멈출 때 자동으로 신호를 시작하거나 멈춘다.

·*DataStudio*에서, 반드시 ''Measure Output Voltage'과 'Measure Output Current'이 Signal Generator 창에서 확인되도록 하라.

·Scope display과 Signal Generator 창을 배열하여 여러분이 두 개를 모두 볼 수 있도록 하라.

4-1 실험방법-저항기 설치하기

PART 표A : 실험 기구 설치하기-저항기

여러분은 이 실험에서 inerface가 센서이기 때문에 센서를 보정할 필요가 없다. (1) 10Ω 저항기를 AC/DC 전기 실험판의 우측하단에 있는 바나나 잭에 가장 가까운 한 쌍 의 구성 요소 스프링에 놓아라.

(2) interface의 "OUTPUT'포트에서 나온 바나나 플러그 패치 코드를 AC/DC 전기 실험 회로 판에 있는 바나나 잭에 연결하라.

PART IIIA : 데이터 기록하기-저항기

(1) 데이터 측정을 시작하라.(*DataStudio*의 'Start'나 *Science Workshop*의 'NON'를 클릭하라.) 전압과 전류의 Scope display를 관찰하라. 필요하다면 수직축이나 수평축을 맞추어라.
(2) 몇 초 동안 전류 대 전압의 궤적을 관찰하고 데이터 측정을 멈추어라.

(1)'Scope'에 내장된 분석 도구로 10Ω 저항기의 전압과 전류를 측정하라.

·*DataStudio*에서, 'Smart Tool'을 클릭하라. 'Smart Tool'를 움직여 전압 대 전류의 궤적에 있는 지점의 좌표를 보이도록 하라. 결과 : 'X-Y'좌표는 전압과 전류이다.

·Science Workshop에서, 'Smart Cursor'을 클릭하라. 커서를 Scope display 영역으로 옮겨라. 결과 : 전압의 값은 수직축에서 'V/div'통제 아래에 나타나고 전류값은 수평축에서 'sweep speed'통제 위에 나타난다.

(2)궤적에 있는 점의 좌표를 사용해서 전압 대 전류의 비율을 측정하라. 이 비율을 저항기의 정항으로 기록하라.

·DataStudio에서, 'X'좌표는 전류이고, 'Y'좌표는 전압이다. 하나로 다른 하나를 나눠 저항값 을 계산하라.

·Science Workshop에서, Scope에서 제시된 출력 전류가 전환되어야 한다. 'X'좌표에 0.05를 곱하여 실제 전류를 계산하라. 'Y'좌표는 실제 전압이다. 전압을 전류로 나누어라.

저항(10Ω저항기)=_____volt/amp

Optional

(1)10Ω저항기를 100Ω저항기로 바꾸어라.
(2)필요한 만큰 Scope display에서 수평축(x-축)을 조정하라.
(3)실험을 반복하라. 새로운 비율로 저항기의 저항을 기록하라.
저항(100Ω저항기)=_____volt/amp

Part B-전구

Interface의 'Output' 특징을 이용하여 작은 전구에 전압을 제공하라. DataStudio나 Science Workshop로 전구 필라멘트를 거치는 출력 전압과 필라멘트를 거친 전류를 측정하라.

프로그램으로 전압과 전류를 제시하라. 전압 대 전류의 그래프로 저항기의 저항값을 확인해 라.

PART IB: 전구 필라멘트에서 컴퓨터 설치하기

(1)출력AC 파동의 진폭과 주파수를 변화시켜라. Signal Generator 창을 클릭하여 그 창을 활 성화시켜라.

(2)진폭값을 클릭하여 이를 강조하라. 새로운 값으로 '2.5'을 타이프(type)하라. 키보드에서 <enter>나 <return>를 눌러 변화값을 기록하라.

(3)주파수 값을 클릭하여 이를 강조하라. 새로운 값으로 '0.30'을 타이프하라. 키보드에서 <enter>나 <return>를 눌러 변화값을 기록하라.

(4) Scope display에 sweep speed을 50 samples/second에 맞추어라.

DataStudio에서. 'samples/s'옆의 'down'화살을 클릭하라. Science Workshop에서 'samp;s'옆의 '-'버튼을 클릭하라.

PART IIB: 전구 필라멘트의 실험 기구 설치하기

(1)AC/DC전기 실험 회로 판에 있는 구성 요소 스프링에서 저항기를 제거하라.
(2)10인치 도입선 두 개로 바나나 잭 옆의 구성 요소 스프링과 3볼트 전구"C"위와 아래의 구성 요소 스프링을 연결하라.

PART IIB : 데이터 기록하기-전구 필라멘트

(1) 데이터 측정을 시작하라. 전구 필라멘트에서 전압 대 전류의 Scope display을 관찰하라. 필요하다면 수직 척도(전압 스케일)와 수평 척도(전류 스케일)를 맞추어라.
(2) 몇 초 동안 기다린 후에 데이터 측정을 멈추어라.

데이터 분석하기 - 전구 필라멘트

Scope display에 내장된 분석 도구로 전압 대 전류의 궤적 위에 있는 몇 개의 점의 좌표를 찾아라. 각 지점에서 전압 대 전류의 비율을 찾아라.