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I. Introduction |

In this paper we shall consider a model of capital accumulation and prove the exis-
tence of a support price path for the optimal path of capital accumulation. The consid-
ered economic model is a continuous time model of infinite horizon.

Under some assumptions of differentiability, we can obtain a dual path for the opti-
mal path by the Euler equation, or by the maximm principle of Pontryagin(1962)
(See, for example, Halkin(1974) and Hauri(1976)). In what follows, Howe\}er, we
shall not make any differentiability assurhptions. Instead, we shall assume the appro-
priate convexity of the mddel,, which is more natural in economics than differentiabili-
ty. Thus, our problem is, so to spéak; ‘the “convex” problem of optimal control without

differentiability.

* Research Fellow and Professor of Economics, Dankook University.
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The convex problem of ‘optima.l control has been studied by Rockafellar(1971) and
Halkin(1972). In non- differentiable and convex models of finite horizon, they prove the
existence of a dual path for the optimal path which “supports” the Hamiltonian funcﬁon.
1t is difficult to compare our argument directly with their argument, since their formula-
tions are much different from ours. However, our results are more general and useful in
the following sense : First of all, the model considered in this chapter is of infinite hori-
zon. Second, out optimality criterion is a general one, that is, the so-called overtaking
criterion originally introduced by von Weimacker(lQGS) and Gale(1967). Third, we
shall prove the existence of a dual price path which supports the value function as well
as the Hamiltonian function. This property of the support price path was established by
Benveniste and ShceinMan(1977) in a differentiable model vﬁth a somewhat stronger
“interiority” assumption on the optimal path. The fact thét a price path supports both
the value function and the Hamiltonian function is particﬁlarly useful in proving the
“turnpike” property of the optimal paths.? |

The main result in this paper in Theorem 1 in section IV, in which the existence of a
dual price Ija‘th for the optimal path is proved. This theorem is a counterpart of the
support price lem‘mé proved by McKenzie(1976) in a discrete time model. One of the
key lemmas in our argument is Lemma 2.in section VI, which exactly corresponds to
the “induction” argument by Weitzman(1973) and McKenzie(1974 and 1976). Of
coiu‘se, since our model is in continuous time, their induction procedure cannot be ap-
plied directly in oui‘ case. However, even in the case of continuous time models, their
method is quite useful and actually makes the proof " simpler and ‘mofe elementary. A
proof which is similar to ours is found in Halkin(1972), but his method seems to be ef-

fective only for finite horizon models.

I. Mathematical Notation

"Let N be the set of all positive integers. For each n € N, R" denotes the n-dimen-

1) L. W. McKenzie, “Turnpike Theorems with Technology and Welfare Function Variable”, Math-
ematical Models in Economics, ed. by J. Los and M. Los, American Elsevier, 1974, pp. 271—287.
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sional Euclidean space. When n = 1, we write R instead of R!. For any x, y € R, the
inner product of x and y is denoted by s.y. The Euclidean norm of any x & R® is de-
noted by, ie., || x]] = yx-x. For any subset U of R?, int U denotes the interior of U
in R" co U denotes the convex hull of U. ‘

For any concave(convex) function f : U — R U {—o0} U {+oo} defined on a
‘covex subset U of R®, symbol of (x) denotes the set of all subgradients of function f at
xe U, e,

aA(x) = {p € RII(x)—p-x >(or<) f(y)—p-y forally € U}.

A _mapping F : U—2® defined on a subset U of R* to the family of all non-empty
subsets of R! is called a correspondence. Correspondence. Correspondence F is called

lower semi- ocntinuous at xo € U if, for any yo € F(x0) and any sequence {x;}.
: ‘ i

eN

in U converging to xo, their exists a sequence {yi}i con{/erging to yi such that Vi

eN
€ F(x;) for alli € N. the correspondence F.is called lower semi- continuvouskif F 1s
lower semi- continuous at all x € U. ‘ ' '

A funcuon f : I-R* defined on a colsed interval I C R to R* is called absolutely
continuous if the restriction of f on any compact interval is absolutely continuous in
the usual sense. Also, the derivative of f is denoted by f.

” [

Any definitional term from measure theory, such as mtegrable measurable”,

and “almost every” should be interpreted in the sense of Lebesque.
II. The Model

Let m & N be the number of different commodities(acpitals) in the economy. The

technology of the economy is described by a correspondence Y : [0, o0) — gR"xx"
mappmg t € [0, ) toa subset y(t) of RM"R.M The notatlon(x, y) € Y(t) means
that at time t if we have amount x of commodities (capitals), we can increase the

amount of the commodities by y. Namely, the pair(x, y) is a technologically possible
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combination of the amount of capital stock and the level of investment at time t.

Define a correspondence S : [0, co)— 28" by

Xt)={x € R7(x, y) € Y(t) for some y € R"}.

Assumption 1 :

(i) The correspondence Y is lower semi- continuous and convex- valued, i.e.,Y(t)
is convex for all t &€ [0, o0).

(ii ) int X(t) = ¢forallt € {0, o0).

Social welfare at any point in time is represented by the instantaneous utility func-

tionu: Gy — R, where Gy is the “graph” of the correspondence Y, i.e.,
Gy = {(x, y, t) € R"XR™"X[0, 0)|(x, y) € Y(1)}.

Namely, for each (x, y, t) € Gy, u(x, y, t) is interpreted as the maximum level of so-
cial satisfaction that can be attained at time t if the amount of capital stock is x and

the level of investment is y.

Assumption 2 : ,
"The function u is a continuous function such that, for each '

t € [0, ), u(x, v, t) is a concave function in(x, y).

Remark.l : ,

Allowing u(x, ¥, t) to assume the value—oco on the boundary of Y(t) (where the
boundary is taken relative to the smallest affine set containing Y(t)) would not be a
more general assumption since setting u(x, y, t)equal to —oo is equivalent to exclud-
iﬁg (x, y) from Y(t). We can always perform this this latter operation because Y(t)
is not necessarlly closed. (Note that such an operation does not destroy the convexity
of Y(t) because of the concavxty of u(x, y, t).) _

An absolutely contmuous function k : [0, o0) — R™ is said to be a feaSIble path be-
tween time r and time s, where r,s € [0, ) and r < s, if (k(t)), k(t)) € s, if (k
), k() e Y'(t) for ahﬁost every t € {r, s}. An absolutely continuous function k :
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[0, c0) — R™is called a feasible path from time r, where r € [0, o0), if (k(t), k(t))
e Y(t) for almost every t € [r, o). For eachx € R™andr € [0, o), let A(x, r)
denote the set of all feasible paths k from time r such that k(r) = x.

Assumption 3 :

If k is a feasible path from time r, then
Suk(t), k(t), t)dt < + oo for all s € [r, o).
The above assumption enables us to define a criterion of optimality for feasible

paths. A feasible path k.« form time r is said to be overtaken by a feasible path k & A (k.
(r), r)if there exist € > 0 and so > r such that

Sulk(t), k(t), t)dt > fu(k(t), k(t), t)dt + e forall s > s
A feasible path k. from time r is called an optimal path from time r if k. is not over- .
taken by any k & A(k.(r), r).

Remark 2
This kind of optimality criterion was introduced by von Weizsacker(1965) and Gale
(1967). An optimal path as defined here is commonly called a “weakly maximum”

path by Brock(1970) and McKenzie(1976).

¢

IV. Necessary Conditions for the Optimal Paths

Let k. be an optimal path from time 6. Then, we can define a function u :Gy—=>Rby
(1) ulx, y, t) = u(x, y, t) —ulks(t), ke(t), t) for each (x, y, t) € Gy, .

If f:u(k(t), k(t), t)dt > —oo forallr, s & [0, o0) with r < s, then we can define a

function V : R™x[0, o) = R U {+o0} by
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€ A, lim il J; 0k, k), O] for each(x, r) € R®

x[0, o) '
For each r € [0, o), the “effective domain” of function V( , r) is denoted by D(r), ie,

(2) V(x,r) =sup

(3) D(r) = {x € R"V(x,1) > — }.

Here, we should note that the above (1), (2) and (3) are defined for a particular
optimal path k. from time o, and that they depend of the optimal path. '
Remark 3-: v

The above- defined function V is commonly called the value function, which was in-
troduced by McKenzie(1976) in the framework of overtaking optimality criterion. We
can easil_y check that the function Vlhasthe following properties :

(i) Fo_r each r € [0, o), V(x, r) is a concave function over all x € D(r).
(ii ) V(ke(t), t) = 0 and k-(t) € D(t) for all t € [0, o). '
Therefore, D(t) =% ¢ for all t € [0, c0).

(iii ) If k is a feasible path between time r and times, then

VK, ) = [ R, k), Dl + VK(S), 5).

While the function u is continuous by Assumption 2, the functionu may not be con-
tinuous since k- is not necessarily continuous. Therefore, we cannot identify the “nor-
malized” utility function u with the original utility function u.

Assumption 4 :
(i) f:u(k-(t), ks(t), t)dt > — oo forallr, s € [0, o) withr <s.

(i) k«(t) € int X(t) forallt € [0, c0).
(iii ) oV(k(0), 0) #'qS where gV(k-(0), 0) denotes the set of all subgradients -
of function V(., 0) at k(0).

Theorem 1:

Let k. be an optimal path from time o satisfying Assumption 4. Then, under
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Assumptions 1, 2, and 3, for any p & ¢V(k.(0), 0) there exists an absolutely
continuous function g: : [0, c©) — R™ with the following properties : - '
(1) a0 =p. |

(i) @:(t) € dV(ke(t), t) for all t & [0, o).

(iii) —(d«(t), g+(1)) &€ du(q:(t), t) for almost every t & [0, o).

In the above, for each t € [0, o), symbols gV (., t) and du(., t) denote the sets

of all subgradients for functions V(., t) and u(., t) respectively.

A proof of this this theorem will be given later. The theorem presented here is a .
counterpart of the theorem which was proved by McKenzie(1976) in a discrete time
model. '

There are some new features in our theorem which are not found in the usual duali-
ty theory for continuous time models. First, we have replaced the usual assumption of
finiteness of the utility integral over the infinite horizon for all feasible paths by the
weaker set- Assumptions 3 and 4 (i), (iii). ‘

Second, condition ( i ) of our theorem says that we can choOserany point in gV (ks
(0), 0) as an initial price for the support price path. That is, for any point in gV (k.
(0), 0), there exists a price path which starts from the point and supports the optimal
ath. : | . 4

Third, the theorem says that condition (ii) and (iii) hold at the same time. .In-
other words, the price path q. supports the value function V(., t) as well as the utility.
function u(., ., t) at every time t. The existence of a price path with such a property
is not obvious in non- differentiable models. |

Our theorem can be restated by using the Hamiltonian equation. Define a function
H:R*xR*x[0, 0) = R U {—o0} U {+} by . ‘.

H(p, %, t) = Sup{u(x, y, t)+p- yl(x, y) € Y(1)} for each(p, x, t) € R*XR*X[0, o0).
Remark 4 : '

The function H is commonly called the Hamiltonian function. It is well known that

for each t&[0, o), H(p, %, t) is a convex function in p and is a concave function in x.

—81—
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Theorem 1’

Let k. be an Optlmal path from time 0 satisfying Assumptlon 4. Then, under
Assumptions 1, 2, and 3, for any p € dV(k+(0), 0) there exists an absolutely
continuous function g+ : [0, o0 — R“’l with the following properties :

(1) a(0) =p. "

(ii ) @(t) € dV(k«(t), t) forallt € [o, ).

(iii) H(q.(t) ke(t), t) = u(k.(t), (ke (1), t)+a(t) ks(t) for almost every t €
[0, o).

(iv) ke(t) € aH(g:(t), ke(t), t) for almost every t € [0 o).

(v) —a(t) € BH(a:(t)), ke(t), t) for almost every t € [0, ).

In the above, for each t € [0, o), symbols AHC(., k«(t), t) and &H(a: (1), ., V)

denote the sets of all subgradients for functions H(ks(t), t) and H(gs(t), » t)

respectively.

Remark 5 :

Theorem 1 and Theorem 1’ are equivalent to each other. In order to show the equiv-
alence, it suffices to prove that condition (iii) of Theorem 1 implies conditions (iii),
(iv), and (v ) of Theorem 1’ imply condition (iii ) of Theorem 1. Although the verifi-
cation is not entirely trivial, we shall not include it since the equivalence is a well-

known fact.

" The following theorem outlines a relation between the value function and the utility
function, which was proved under somewhat stronger assumption by Benveniste &

Scheinkman(1977).

Theorem 2 :

Let k. be an optimal path from time O satisfying Assumption 4. Then, unde
Assumption 1, 2, and 3, the following holds :
V(ke(t), t) C —guks(t), ke(t), t) for almost every t € [0, o), where sy
bol gu(ks(t),., t) denotes the set of aﬂ subgradients for function u(k.(t), ., t
for each t € [0, o). ’
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This theorem can be proved using Theorem 1. The proof will be given in a following

section.

V. The Outline of the Proof of Theorem 1

In order to prove Theorem 1, it suffices to show that the following auxiliary theor-

em Is true.

Auxiliary Theorem :

Let k« be an optimal path from time 0 satisfying Assumption 4. Then, under
Assumption 1, 2, and 3, for any p € ¢V(k(0), 0) there exists an absblutely
continuous function q; : [0, 1] — R™ with the following properties : '

(i) a(0) = p.
(i) au(t) € dV(ks(t), t) forallt & [0, 1]. .
(ifi) —(@(t), @(t)) &€ dulke(t), ke(t), t) for almost every t & [0, 1]. -

The Auxiliary Theorem implies that, since k. is also an optimal path from time 1,
there exists an absolutely continuous function q.: [1, 2] — R™ with the following

properties :

a(1) = (1) _
q(t) € dV(k«(ty, t) forall t & [1, 2].
—(Qz(t), a:(t)) € du(ke(t), ke(t), t) for almost every t & [1, 2].

By repeating the same argument and constructing such a function Qo - [n—F 1,n] -
R™ for each n € N, we can obtain an absolutely continuous function g : [o, 00)—>'R"‘, :
‘ which is defined by q.(t) — q.(t) for eacht &€ [n—1, n]. '

ObviouSly, by construction, function q. satisfies all the conditions required in Theor-
em 1. Thus, we know that the Auxiliary Theorem implies Theorem 1. '

'Further.more, we can show that the following two propositions imply the Auxiliary

theorem.
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Proposition 1 :

For all t, & [0, o), there exist two number r, s € [0, ) withr < t, < S
(r=t, only when t,=0) such that there exist feasible paths k; between time r
and time s, 1=0, 1, «+--- , m with ihe following properties :

(i) k«(t) € int co {ko(t), ki(t), *==+=* , ka(t)} for all t € [1, s].

(i) |Saki(t), ki(t), t)dt|<co for all i=0, 1, -+, m.

Proposition 2 :
Suppose that there exist feasible paths ki between time r and time s, 1 = 0,
1, eeeees , m, satisfying conditions ( i ) and (ii) of Proposition 1. Then, for any
p € dV(k«(r), r) there exists an absolutely continuous function q : [r, s] - R™® |
with the following properties : |
(i)aq(r) =p
(ii) q(t) € dV(k«(t), t) for allt € [r, s].
(iii ) —(d(t), q(t)) € du(ks(t), ke(t), t) for almost every t € [r, s].

In fact, since [0, 1] is compact, Proposition 1 implies that there exist finitely many
pairs {r;, s} withr; < s, i=1, 2, e+eeee , 1, such that [0, 1] C u%-;_ [r;, si], and such that
each pair {r, s;} hax the same desirable properties as the pair {r, s} in the proposition.

Without loss of generality, we can assume that

Since p €9V (k:(0), 0) by assumption, by applying proposition 2 to eé.éh pair {r;, s}
successively from i = 1 to ], we can construct the function q, : [0, 1] — R™ claimed
in the Auxiliary theorem. |

Thus, all we have to do is to prove Propositions 1 and 2. This will be done in the fol-

- lowing two sections.

Remark 6 .

Proposition 2 may be called the local existence theorem of a support price path. The
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- proposition shows a sufficient condition for the existence of such a support price path,

while Proposition 1 insures that the sufficient condition is indeed satisfied.

IV. Proof of Proposition 1

The following is one of the fundmental lemmas in our argument.

Lemma 1 v

For any (X, Yo, to) € Gy with xo € int x(t,), there exist two numbers r, s&
[0, c0) with r < t, <s (r=t, only when t,=0) such that there exists an
absolutely continuous function h:[r, s] — R™ with the following proper-
ties ’ '
(1) (h(t), B(1)).€ Y(t) for almost every t & [r, s]
(ii ) The derivative h is a contiuous function.

(i) (h(ta), B(ta)) = (xor o)

Proposition 1 can be easily proved ﬁby this lemma. In fact, since ko € intx(t,), there .
exist vectors vo. vy, **eee , Vm € int x(to) such that k.(t,) € int co {Vo, V1, *¥+o+, Y} C
int x(to). Therefore, by Lemma 1, for each i=0, 1, ++++-- , m, there exist two numbers r;;
s € [0, 0) with I; < to < s;<r; = to only when t,=0) such that there exists an

absolutely continuous function hi : [, s;] = R™ with the following properties :

(4) (hi(t), hi(t)) € Y(t) for almost every t € [r;, si]
(5) The derivative ki is a contiuous function.

(6) hi(t)) =v;

From(6), it follows that k«(ty) & int co {ho(ts). hi(ts), =++--- , ha(te)}. Therefore,
since hy, hy, <ot , ha, and k. are continuous functions, there exist two numbers r, s €
[o, 60) with <1 <t < s <s;for all i=0, 1,» ------ , m(r=t, only when t,=0) such
that '

—85—
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hi(r) foreach t € EO, r)
kg(t)[ hi(t) for each t € [r, s]
: hi(s) for each t & [, o0).

Then, by (4), ke, ki, =+ , ka are feasible paths between time r and time s, and by
(7), satisfy condition (i) of Proposition 1. Also by (5) and Assumption 2, for each i
=0, 1, -+-- , m, u(k;(t), ki(t), t) can be regarded as a continuous function of t & [r,
s], and its integral exists. Thus, by definition of u and Assumption 3 and 4, condition
(ii ) of Proposition 1 is proved. This completes the proof of Proposition 1.

In order to prove Lemma 1, we need the following three sublemmas.

Sublemma 1 :

The correspondence X : [0, co) —2R™ is lower semi- continuous and convex-
valued.
Proof : This sublemma is straightforward from Assumption 1( i ).

Q.E.D.

Sublemma 2 :

Fbr any xo € R™ and ﬁo € [0, ) with %€ int x(to), there exfst a compact
neighborhood U of %, and two numbers r,s € [0, 0) withr < to <5 {2y
only whenrto-—_- 0) such that (x, t) € Ux[r, s] implies x € int X(t).

Proof : Suppose that this sublemma is not true. Then, there exists a sequence

{(xn ta) }n eN in R™x[0, 00) converging to a point (xo, to)with x; € int X(to), such

that x.&int X(t,) for all n € N. Since x € int X(to), we can find vectors vq, vi,
------ , Vm € X(to) such that ' '

(8) x0, € int co {vo, V1, **eee* s Vm}.

- Since the‘cori'espondence X is lower semi- continuous by Sublemma 1, for each i=0,
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1, eeeeee , m, we have a sequence {v{‘}n converging to v; such that v} € X(t, for

eN
all n & N. Therefore, from (8), it follows that x, € int co {v3§, ,v], - , v} for all
sufficiently large n & N. Since X(t,) is convex by Sublemma 1, this implies that x, €

int X(t.) for all sufficiently large n & N. This is a contradiction.
Q. E. D.

Let G4 denote the “graph” of the correspondence X; i e,
Gx = {x, t} € R=x[0, o0)|x € X(t)}.
Define a correspondence F : Gx — oR” by

F(x,t) = {y € le(x, y) € Y(t)}f.or each (x, t) € Gx.

S\iblemma 3:

The correspondence F is convex- valued and lower semi- continuous at any (xo,

to) € Gx with xo € int X(to).

Proof : Suppose that x, € int X(to), y§ & F(xq, to), and that a sequence {x,, tn)}n

in Gx converges to (xo, to). Since xo € int X(to), there are(ve, wo), (vi, W1), ceeeee,

eN
(Vm, Wm) € Y(to) such that

(9) xo € int co {vo, Vi, ***e* s Vm}e:

Since the correspondence Y is lower semi-continuous by Assumption 1( i), for

 eachi=0, 1, ++++e , m, we have a sequence {(v?}, w?)}n eN converging to(vi, wi)

such that(vf, w* € Y(t,) for alln € N. Also, since(xo, yo) € Y(to), for the same

reason, we have a sequence {(x.’, y.l')}lrl E Nconverging to (%o, Yo) such that(x,,', va')
€ Y(t,) foralln € N.

By (9), we know that there is a number &>0 such that, for all sufficiently large n

EN,
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for all sufficiently large nE N, we have

(11) || xa—xd| <&o/3 and || xa" —xol| <eo/3.

Therefore, in proving the lower semi- continuous of F, we can assume withoui loss
of generality that(10) and (11) are true for alln & N. |

For each N € N with x;,” =% x,, piék a point x,” such that &/3<|| x.", x| <eo
and xa = @uXa’ +(1—0.)x." for some 0 < 6. < 1. |
And for each n € N with x," =x,, let x,”"—x,” and §® = 1. Then, in any case, x,=§,
X’ +(1—0)x," for all n & N. Clearly, §, goes to 1 as n goes to oo, since x, and x,”
converges to Xo. .

Moreover, for each n & N, pick a point_ v.” such that(x,”, v.”) € Y(t,) and y,” €

int co {v§, v, ceeeee , vi} for all n € N. Clearly, {Y."} is a bounded sequence.
. n

N
Let o = Guya’ +(1—@.)y." for each n & N. Then, (x,,y.) € Y(ta), that is, y, €
F(xa, to) for all n &€ N. Furthermore, y. goes to yo.as n goes to oo, since y,’ converges

to yo, 6. converges to 1, and {y.”} is bounded. This proves the lower semi- con-

neN
tinuous of | correspondence F.

Moreover, correspondence F is easily shown to be convex- valued, since correspond-
ence Y is convex- valued.

Q. E.D.

Proof .of Lemma 1 : Since xo € int X(ty), by Sublemma 2, we have » compac:
“neighborhood U of x, and two numbers r’,s’ € [0, ©) withr’ <to <s’(r’=to only
when to=0) such that (x, t)€ U x [r’, s’] implies x € int X(t).

Define a correspondence F’ ; Ux[r’,s’] — 2R" by -
. {30} for (x, t)=(xq, to) |
F00t) [ e, 0 for (i, e (oo 1),
By Sublemma 3, we can easily prove that correspondence F’ is convex-valued and
lower semi-continuous. Therefore, by a continuous selection theorem in Michael
(1956), we have a continuous function f : Ux[r’, s’] — R™ such that f(x, t) € F’(x,

t) for all (x, t) & Ux[r’, s’]. Hence, by a well- known theorem on the existence of
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solutions for ordinary differential equations,” we have two numbers r, s € [r’, s’]
with r < ty <s(r=to only when t,=r’) and an absolutely continuous function h : [r,
s] = R™ such that h(ty)=x, and h(t), t) for almost every t € [r, s]. (When r’ =to,
we can not apply such a theorem directly to function f, but to a continuous extension
f’ of f defined by
F’(x, 1) l: f(x, t)’for (x,t) € Ux [r',,s'p) )
’ F(x,r’) for (x,t) eUx[r'—1,r")
Therefore, our argument is true even in the case of r’ =t,.)
By construction of function f, we have conditions ( i ) and (iii) of Lemma 1.

Also, h(t)=1(h(t), t) is continuous since f is continuous. Namely, we have condition

(ii ) of the lemma.

QE.D.

VI. Proof of Proposition 2

The following lemma will play a central role in our argument. The lemma corre-
sponds to the “induction” procedure by Weitzman(1973) and McKenzie(1974 and

1976) in discrete time models.

Lemma 2 .

Suppose'that there exist feasible paths k; between time r and time s, i=0, 1, ------ ,
m, stisfying conditions ( i ) and (ii) in Proposition 1. Then, for any t’, t* &€ [r, s]
t’
witht’ < t” and any p” € gV (k«(t"), t"), there exists p” € gV (k-(t”) such that ft,
u(ke(t), ke(t), t)dt—p'ke(t”) +p"k(t")
= J‘t, u(k(t), k(t), t)dt—p’k(t’)+p“k(t”) for all feasible path k between t* and t”.

t .

Proof : By definition of the value function V, we have

2) A. F. Filippov, “Differential Equations with Discontinuous Right- Hand Side”, American
Mathmatical Society, Translations 42, 1964, pp. 199—231.
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V), ) > [, G0, kW, Dd+V R, 1)

for all feasible path k between time t” and time t*. Also, since p’ € V(k«(t"), '),
we have

Vik(t’), t’) —DP’k. (t’) = V(x,t')—p’xforallx € R™
The above two inequglities imply that

£, 8 Ga®), v, DA+ V(a(t), 1) =Dk (1)

> J':, T (k(t), k(t), )dt+V(k(t"), t*)—p’k(t’) for all feasible path k be-

tween time t’ and time t”.
Let - denote the left- hand side of inequality (12). Define two subsets C, and C; of

- Ra+t by

Ci={(a, x) € R xR™|x = k(t”) and

a > a.—f:, u (k(t), k(t), t)dt+p'k(t’) for some feasible path k between
time t’ and time t”} and

C={(a,x)) €ERxR"€D()andea < Vix, t")}
We can easily check that both C; and C, are non-empty and convex. Also, from(12),
it follows that they are disjoint. Therefore, by a well- known separation theorem, we

have a non- zero vector (x, —p”) € R X R™ such that

7 i '
(13) 7r[ah—.ft, u(k(t), k(t), t)dt + p’k(t)]—p"k(t") = 7 V(x, t")—p"x
for all x & D(t”) and all feasible path k between time t” and time t” with IS :, u
(k(t), k(t), t)dt| < oo.
Puj. k = ke in (13). Then, ‘
(14) 7V (ks(t"), t")—p"ke(t”) = #V(x, t") —p"x for all x & D(t"). Also, put x =
ke(t”) in (13). Then,

15 LS, W(®), ), DA—P R THp ket



A Support Price Theorem for the Continuous Time Model of Capital Accumulation

T U:, u (k(t), k(t), t)dt—p’k(t’)]+p”(t") for all feasible path k between time t’

and time t* with | J‘: T(k(t), k(t), )dt | < oo,

We can easily see that the particular forms of C, and C, imply 7 > 0. Suppose that
7z = 0. Then, it follows from (15) that p"k.(t”) > p” ki(t”) for alli = 0, 1, --+, m,
where ko. ki*-+, kn are functions assumed to exit in this lemma. Therefore, since kq, ki,
-+, k., satisfy condition ( i ) of Proposition 1, we can conclude that p” = 0. However,
this is a contradiction to the premise that (&, —p”) = 0. Thus, we have proved that 7

> 0.
Without loss of generality, we can put 7 = 1. Therefore, by (14), we have p” € gV

(k«(t7); t7). Also, since m = 1, in (15) we can ignore the .condition of U:j u (k(t), k
(t), t)dt | < co. Moreover, by defini_tion of u in (15) by u. This comletes the proof of
Lemma 2.
| Q E.D. |
Now let us begin to prove Propostion 2. Pick p € dV(ke(r), r). For each n € N, de-
fine a finite subset T, of [r, s] by ' '

i(s—r)
To={telns]lt=r+——i=11,2}

, (i—1) (s—r) i(s—r) o
Apply Lemma 2 to each pair {r + p” , T+ - } successively from

i = 1 to 2% Then, we have (2 + 1)—triple of vectors denoter by [p,.(t)]téT,.],

where p,(r) = p, such thé.t
(16) pa(t) € IV (ke(t), t) forallt € T, and

(17) J':, u(ke(t), ke(t), t)dt—pa(t”) + pa(tke(t") =

fi, u(k(t), k(t) t)dt—pa(t)k(t") + pa(t”)k(L”)

forallt’, t” & T, with t’ < t” and all feasible path k between time t’ and time t”.



We can prove the following :

(18) Set{p.(t))n € N and t & T} is bounded.

Suppose that this is not true. Then, there is an infinite subset No of N such that for
each n € No we can pick up t, € T, and || pa(ta)]] goes to co as n € No goes to co.
Without loss of generality, we can assume that

n(tn)
lim t. = toand lim P poz= 0. On the other hand, by (17) we have

n—>oo n-—-)OO” pn(tn) ”

L : u(ke(t), ke(t), t)dt—pke(r) + pa(ta)k+(ta) J/]| palta)l|

> J':_n u(k(t), k(t), t)dt—pk(r) + pa(ta)k(ta) /|| palta]|
for all n & No and all feasible path k between time r and time s. Therefore, in the
limit, pok+(te) = pok(te) for all feasible path k betweén time r and time s. By assump-
tion of the existence of fﬁnctions ko, ki, coveer , kn, satisfying condition ( i ) of Proﬁosi—
tion 1, we can conclude that p, = 0. ThlS is a contradiction. thus, (18) is proved.

Let T = Un T.. We can prove the following :

e N
. (19) There is a bounded function qo : T—R™ with tﬁe following properties : -
(i) qfr) = p. '
(ii ) @o(t) € dV(ke(t), t) forallt & T.

(i) S, w0 (®), (b, Ddt—aolt (1) + @bt 2

”

t .
ft, u(k(t), k(t), t)dt—qo(t” )k (t")+qo(t" k(L")
forallt’, t* & T with t’ < t” and all feasible path k between time t’/ and time t’av

For each t € T), we have a sequence {pa(t) In>1 énd n &€ N}. Since T, is a f1
nite set, by (18) we cah find an infinite subset N; of N such that for any t € T, se-
quence {p.(t) | n € Ni} convergen to a point, say qo(t). Then, for each t € Tz we
. have a sequence {p(t) [n = 2 and n € N;}. Again, since T; is a finite set, by (18)
we have an infinite subset N; of N; such that for any t S Tz, sequence {pa(t) | n € N;}
converges to a point, say qo(t). (Although Ty C T, this notation is consistent since N
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O N.) By repeating this procedure, we have N, D Nz D Nj, «+e--¢ such that for any i
€ N and any t € T}, sequence {p.(t) | n € Ni} converges to a point qu(t). Therefore,
by picking up a number n; from each N;, we have an infinite subset of N denoted by N.
= {ny, nz N3, r**re* } such that if t € T for some i & N, then sequence {p.(t) | n =i
and n & N.} converges to go(t). In this way, we can define a function Q. T — R~
which is bounded because of (18). Obviously, condition( i } of (19) holds, since p.(r)
=pforalneN.IfteT,ie,t = T; for some 1 & N, then (16) is true for alln
N. with n > i. Since set V(k.(t), t) is closed, condition (ii } of (19) holds in the limit.
Also, if t’,t” & Tand t’ < t”, thent’, t” & Tj for some j € N. Therefore, 17 is
~ true for all n € N. with ‘n > j. Thus, condition (iii) of (19) hols in the limit. This
completes the proof of (19).

Suppose that function g is not cor;tinuous. Then, since function q is bounded, there

and {t,,”}n converging to a point to such that t," <

eN

are sequences {t,”}
n

eN

to <t,” foralln € Nand lim (qo(t."(—q(t.’)) =p =*0.
n—o0

By condition (iii) of (19), we have pk.(ts) =pk(t,) for all feasible path k between '
time r and time s. By assumption of thé existence of functions kg, ky, ++++-* , ka satisfy-
ing condition (i) of Proposition 1, we can conclude that p = 0. This is a contradiction.
thus, function qo is proved to be a continuous function. Hence, since T is a dense sub-
set of [r, s], function g, can be uniquely extended to a continuous function, say q : [T, -
s] — R™,

We can prove the following @

(20) The continuous function q : [r, s] — R™ satisfies the following conditions :

(i)q(r) =p. _
(i) qt) € dV(ke(t), t) forall t € [r, s].

(i) S, uCe(w), (), Ddt—a(tke(t) +qlke(t) =

£ ulket), (), Dd-a(t k) + gk for all U, 1 & [, 5]

with t* < t” and all feasible path k be_tweén time t’ and time t”.
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Condition (i) of (20) obviously follows from condition (i) of (19). Also, since
function q Is a continuous eitension of function g and since T is dense in [r, s], con-
dition (iii) of (19) implies condition (iii) of (20). To prove condition (ii) of (20),
- let x0 € X(to) and ty € (r, s]. Then, by Lemma 1, we have an absolutely continuous
function h: [r’, tt] — R™, where r < r’ <t satisfying the following condi-
tions : v | .

(h(t), K(t)) € Y(t) for almost every t : [r’, t.].
- The derivative h is a continuous function.
h(to) = xo.

Since T is dense in [T, s], we have a sequence {t,,}n converging to to such that t,

EN

eTn &, to] for all n & N. Therefore, by condition (ii ) of (19), foralln & N
V(ke(ta), ta) —q(ta)ke(ta) = V(h(ta), ta) —q(ta)h(ta).

Namely, by definition of the value function, for alln & N

¢

£ (0, K1), Ddt—Vie(to), ) —qltake(ts) >

£ Wh(), B, t(dt+V(h(te), to) —a(t)h(t).

Thus, in the limit, V(k+(to), to)_—q(to')'k-(to) = V(xq, to) —q(to)xo. This implies q(to) S
Vika(to), (to), since'k.(to) € int X(t) by assumption. Also, q(r) = p € gV (k«(r), r).
Thus, condition (ii ) of (20) is-pro'ved. |

Now we can prove the following :
(21) The function q is absolutely continuous.

By (20), we have |

”

f:,u(ka(t), ke(t), )dt+q(t")ke(t") —ke(t")) — f:,U(ki(t), ki(t), t)dt—q(t"ki(t")

—ki(t")) = q(t”")—q(t’")) ki(t’) —ke(t")) for all t’,t" €[r, s] with t’ < t” and
alli = 0, 1, +--:, m, where ko, ki, *+++++, kn are functions which are assumed to
exist in Proposition 2. Since functions kq, ki, +++++ ,» kn satisfy condition (i) of
Proposition i, we can easily prove the follo,vﬁng facts :

(i) Forallt’,t” € [r,s] witht’ < t*,
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max q(t”)—q(t")) (k(t")—k.(t")) > 0.
0<i<m

(ii ) There exists A >0 such that || ki(t)—ke(t) || -> Afor all t & [r, s] and
alli = 0, 1, «-eeee , M.
(iii ) There exists @ > 0 such that in v € R® and t & [r, s], then v(ki(t) —k.
W) =8| vl Il k(t)=ke«(t)|| for some i.
Also, there exists # > 0 such that || q(t) || < Bforallt &€ [r, s], since function q

is continuous. Therefore, we can derive the following inequality :

(m+1)

[J':,lu(k.(t), Ru(t), 1) |dt + B k() —k(t'— | ]+

1 o ¢ ' |

— B, a0, B, | de + 811 ) -l 1 >
1 : ” S

— max [fulke(t), k1), )t + (") (ke(t) —ke(t)
0 0<i<m ! , ’

—f‘: a(ki(t), k), dt—q(t”) (k(t”) —ki(t"))]

1 :
>— max (q(t”)—q(t")) (ki(t")—k«(t"))
0 0<i<m '

1 . |

>— max 4| @t—awN || Ga(t)—ke(t" NI
A0 0<i<m .

2| ) —aqt)) || forallt’,t” e [r, s] witht” < *.

By the above inequality, since Lebesque integrals ae absolutely continuous and since
functions k.. kq, Ky, eeeee » kn are absolutely continuods, we can easily show that func-
tion q is absolutely continuous. 'I '

In order to complete the proof of Proposition 2, by virtue of (20) and (21), we have
only to prove the foﬂowing : _
(22) —(q(b), q(t) € au(ks(t), ke(t), t) for almost every t € [r, s].

First we should note(see, for example, Natanson(1955, p. 255)) that for almost



every t, € [r, s]

to+

1 ;
lim  —xf 0 u(ke(t), ke(t), t)dt = uke(to), ke(to), to),
#—0+ to ,
i 07 s and
-0+
ke(to+6) —k- .
i (t+8) (to) — k(i)
6—-0+ 0 .

For such a point to € [r, s], suppose that (%o, y0) € Y(to) € Y(to) and %, & int X(to).
Then, by Lemma 1, there exist a number s’ with ty < s”<s and an absolutely contin-

uous function h : [to, s”] — R™ satisfying the following conditions :

(h(t), h(t)) € Y(t) for almost every t € [to, s’ .
his conj,inuous function.

h(te) = xo and h(t)) = yo.

Since functions u and h are continuous, we have

1t -
im —xf Gne), B, Hdt = ulh(te)s B(t)s ta) = u(xs yo to) and
0—)0—}-’0 to . o .
h(to+8)—h(te '
| W)=t _ oo
60+ . 7} .

Furthermgre, by condition (iii ) of (20), for all @ > 0 with ¢ < s’ —to,
alte+8) —alte) |

0 e, ke(v), Dt +

1
0 "t
ke(to+8)—ke(to) _ 1 to+6

T2, ubO,hW, O+

+6)— . h(te+8)—h
q(te 66) VQ(tO)=h(fo)+q(to+l9) (to+60)—h(to)

ke(to) + q(te+6)

"Therefore, in the lirﬂit, we have |
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Uk (to), ke(to), ta) +q(to)k+(to) +q(to)k+(to)

> u(o, Yo to) +4(to)x+q(to)¥o.
This inequality holds for all (x, y) E Y(io), because, by convexity of (t), any point
(x,y) € Y(t) can be represented as a limit point of a sequence {(xa, va)} with (Xa, ¥a)
€ Y(t) and x, € int X(t) for alln € N. |
In fact, let (x, y) € Y(to), (X0, ¥o) € Y(to) and %o € int X(to). For_ each0< 9 <1,
define (xo, y9) = 6(x, y)+(1—0) (o, ¥o). Then, (x4, y8) € Y(t) and x¢ € int X(to) for
all 0 <@ < 1. Thus, we have proved that — (q(to), q(t)) € du(ks(to), ke(to), to), Le., (22).
This completes the proof of Proposition 2. ' ‘

ViI. Proof of Theorem 2

First we should note® that for almost every to € [0, c0)

1 e+ o .
im —f u(ke(t), ke(t), t)dt = ulke(to), ke(to), to) and
-0+ 0 b - |
ke —keo!
i (to+8) —k(to) — ke(to).

60+ 0

Let to be such a point and (ke(t), yo) » Y(to). Since k(to) € int X(to), by' Lemma 1
there exist a number s > t, and an absoiutely continuous function h : [t,, s] = R™
with the following properties : - '

(h(t), K(t)) € Y(t) for almost every t € [to, s].

h is a continuous function. .

h(te) = ke(to) and h(te) = ¥o.

Since functions h and u are continuous, we have

3) 1 P. Natanson, Theory of Functions of ¢ Real Variable, trans]afed by L. F. Bom & ‘E. Hewitt,
Frederick Ungar Publishing Co., 1955, p. 255. .
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Y o . |
lim — £ u(h(0), B, Dt = u(hi), B, ) = ulle(te), Yo 0

and

h(te+8)—h
i (to+8)—h(to) B, = yo.
-0+ 0

Furthermore, since k- is also an optimal path from time to, by Theorem 1, for any po
& V(ke(to), to) there exists an absolutely continuous function qo : [to, 00) — R™ such
that

ao(to) = poand

—(@(t) = po(t)) € Au(ke(t), ke(t), t) for almost every t € [ts, o).
Therefre, for almost every t € [to, s] '

u(ke(t), ke(t), t) +do(t)ke(t) +qo(t)ke(t)

= u(h(t) R(t), t)+de(t)h(t) =qo(t)h(t).

By integrating this inequality, for all § > 0 with § < s—to we have

f:w u(ke(t), k(t), 1)t — Qu(to)ks(to), Qo(ta+8)ke(to+6)

= fz+0 u(h(t), h(t), )dt — an(ta)h(ta), qoto+&)h(te+8).
1e., ' :
1 . . ke —ke.
_—a—f :+0 u(ks(t), ke(t), t)dt +. (t°+0;. (o)

ho(te+ &) —h(to)
0

1 . '
'0—1'2—'_0 u(h(t), K(t), t)dt + qu(te+6)

Thus, in the limit, we have __
* u(ke(to), ke(to), to) +poke(ta) = u(ke(to), ¥o, to) +poyo
Namely, Fpa e gulke(to), ke(to), to). Hence, we have
9V (ke(to), to) C. — au(k«(to), k«(to), to).

This completes the proof of Theorem 2.



A Support Price Theorem for the Continuous Time Model of Capital Accumulation

References

Benveniste, L. M. & J. A. Scheinkman, Duality Theory for Dynamic Optimization
Models of Economics : The Continuous Time Case, Discussion Paper 77—12,
Department of Economics, University of Rochester, 1977. |

Binmore, K. G., Calculus, Cambridgquniversity Press, 1983.

Brock, W. A., “On Existence of Weakly Maximal Programmes in a Multi-Sector
Economy”, Review of Economic Studies 32, 1970, pp. 275—280.

Filippov, A. F., “Differential Equations with Discontinuous Right-Hand Side”, Ameri-
can Mathematical Society, Translations42, 1964, pp. 199 —231.

Gale, D., “On Optimal Development in a Multi- Sector Economy”, Review of Economic
Studies 34, 1967, pp. 1—18.. |

Halkin, H., Extremal Properties of Biconvex Contingent Equations, Ordinary Diferential

- Equations, ed. by L. Weiss, Academic Press, 1972. v '
, Necessafy Conditions for Optimal Control Problems with Infinite Horizons,
Econometrica 42, 1974, pp. 267 —272.

Haurie, A., “Optimal Control on an Infinite Time Horizon : The Turnpike Approach”,
Journal of Mathematical Economics 3, 1976, pp. 81—102. '
McKenz1e L. W., “Turnpike Theorems with Technology and Welfare F unction Varla-
ble”, Mathematzcal Models in Economics, ed. by J. Los and M. Los, American

Elsevier, 1974, pp. 271 —287. ,

_____, “Turnpike Theory”, Econometrica 44, 1976, pp. 841—865.

Michael, E., “Continuous Selections I”, Annuals of Mathematics 63, 1956, pp. 361—
382. | - |

Natanson, LP, Theory of Functions of a Real Variable, translated by L. F. Born & E
Hewitt, Frederick Ungar Publishing Co., 1955.

Pontryagin, L. et al., The Mathematical Theory of Optimal Process, Interscience Publish-
ers, Inc., 1962. ' N



E ¥ W %

Rockafellar, R. T., “Existence and Duality Theorems for Convex Problems of Bolza”,
Transactions of the American Mathematical Society 159, 1971, pp. 1—40.

Von C. C., Weizascker, “Existence of Optimal Programs of Accumulation for an Infi-
nite Time Horizon”, Review of Economic Studies 32, 1965, pp. 85—104.
Weiﬁzman, M. T., Duality Theory for Infinite Horizon Convex Models”, Management

Science 19, 1973, pp. 783 —789. |

= &+ 8 ¢
£ rEe Auade B¢ Y42 2Ys AYA2 B ANAAA2e
E2Q4e A7) SRS o3} FHE wRo zﬂm; Azste] ¥, A
=8 & Aotk

WA wlistsAge AAstolA Euler WAAF Pontry#ginﬂ Fold=EE )43t
o AAAZ g AUAESAAY A2 e =58 ngten “]—r—7l- Aol A7 el
ARA il B 254 EAE T By

Rockafeller<} Halk1n°]] g A Zu5 o]z Hamilton §4¢] 9§ AAARIA=Z
= g% AU EA44¢ vxs & W, 453 Azt A9 McKenzies] <Js]4 %
wxolal Aol gt olEnr) A A2k M e] Weitzmans} McKenzies]
A A7 A gk Ao 2L vzt & o AA2AE F24 o] & &
etz 290 nep 44 WEsA £&942 Helzx 2ok

—100—



