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Ⅰ. Introduction

Convex sets and convex functions have many special and important properties and these 

properties can be utilized in establishing suitable optimality conditions for nonlinear programming 

problems.

The purpose of this is to obtain the Kuhn-Tucker conditions under suitable convexity 

assumptions. This paper is divided into three sections. Section Ⅱ includes basic concepts and 

properties which will pave the way for the development of our arguments. And we will prove the 

Fritz John condition in section Ⅱ, which is important to derive our main theorems. In section Ⅲ, 

we will derive the main theorems. And, to illustrate how to apply our main theorems, we will give 

an example. 

The terminologies and notations are standard and they are taken from [Bazara and Shetty, 1979]. 

Throughout this paper, the n-dimensional Euclidean pace is denoted by En

＊ Professor of Economics, Dankook University, Seoul, Korea.
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All vectors are column vectors unless explicityly stated otherwise. Row vectors are the transpose 

of column vectors ; for example, x t denotes the row vector ( x 1, x 2, ⋯, x n )

The norm of a vector

x . =  
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,

then we also use the notation x ≥ 0 to mean that x i ≥ 0 for all i=1,2,⋯,n. For S∈ En , 

the closure of S  and the interior of S  are denoted by cl S and int S , respectively.

Ⅱ. Preliminaries

In this section, we introduce some basic definitions and well-known results on convex sets and 

convex functions, which will be used in this paper. In some cases, we will omit proofs for the 

briefness, but we will indicate references where the propositions can be founded. 

Proposition 1：Let be a nonempty closed convex set En and y /∈ S. Then there exists a 

nonzero vector p  and a scalar α  such that p ty > α and p tx≤α for each 

x ∈ S .

Proposition 2：Let S be a nonempty convex set in En and let x ∈ ∂S, where ∂S is the 

boundary of S . Then there exists a nonzero vector p  such that 

p
t
( x - x ) ≤ 0  for each x ∈ cl S .

Proposition 3：Let S 1
 and S 2

 be nonempty convex sets in En and suppose S 1 ∩ S 2
 is 

empty. Then there exists a nonzero vector p  in En such that

inf { p
t
x：x ∈S 1 } > sup { p

t
x：x ∈S 2 }

Proposition 1, 2 and 3 are proved in [Bazaraa and Shetty, 1979]
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Proposition 4：(Gordan's Theorem)：Let A be an m×n matrix. Then exactly one of the 

following systems has a solution. That is, if System 1 has a solution, then 

System 2 has no solution and if System 1 has no solution, then System 2 has 

a solution.

System 1. Ax < 0  for some x ∈ En

System 2. Atp=0  and p≥0  for some nonzero p∈En .

Proof：Assume that System 1 has a solution x̂ . Then, since Ax̂ < 0, p̂≥0  and p̂≠ 0  we have 

p
t̂
A x̂ < 0 . That is x t̂A t

p̂ < 0. But A t
p̂ < 0 by assumption. Hence x t̂A t

p̂ = 0 This is 

a contradiction.

Conversely, assume that System 1 has no solution. Consider the following two sets：

S 1= {z：z=Ax,x∈ En }

S 2= {z：z < 0 }

Note that S 1
 and S 2

 are nonempty convex sets such that S 1∩S 2 = ∅ . By Proposition 

3, there exists a nonzero vector p  such that

p
t
Ax≥ p

t
z

for each x∈ En and z∈ S 2

Since each component of z could be made arbitrarily large negative number, it follows that 

p≥ 0 . By letting z = 0 , we must have p t̂A x̂≥ 0  for each x∈ En By choosing x = -A
t
p, it 

follows that - ||Atp || 2≥0  and thus Atp = 0 . Hence System 2 has a solution. 

Definition 1：Let S be a nonempty set in En and let f ：S→E 1
 Then f is said to be 

differentiable at x∈ S  if there exist a vector Δf ( x )  called the gradient 

vector, and a function f ：S→ E 1
 such that 

f (x )= f ( x ) + Δf ( x ) t (x- x ) + | |x- x || a ( x：x- x )

for each x∈S  where lim
x→x
a ( x ：x- x ) =  0

If f  is differentiable at x , then there could only be one gradient vector, and this vector is 

given by

Δf ( x ) = ( ∂f ( x )
∂x 1

,
∂f ( x )
∂x 2

,⋅⋅⋅,
∂f ( x )
∂xn )

t



産 業 硏 究

- 160 -

where ∂f ( x )
∂x i

, is the partial derivative of f  with respect to x i at x  for i = 1, 2,⋅⋅⋅, n

Definition 2：Let S be a nonempty set in En and let f ：S→ E 1
. Then f  is said to be twice 

differentiable at x∈S if there exist a vector Δf ( x ) and an n×n symmetric 

matrix H(x), call the Hessian matrix, and a function a：En→E 1
 such that 

f (x )= f ( x )+Δf (x ) t(x- x )+
1
2

(x- x )
t
+ H(x )(x- x ) + | |x- x || 2 a ( x , x- x )

for each x∈S where lim
x→x
a ( x ：x- x ) =  0

The entry in row i  and column j  of the Hessian matrix H(x )  is the second partial derivative 

∂
2
f ( x )
∂x i

, to the main theorem. 

Definition 3：Let S be a nonempty convex set in En and f ：S→ E 1

(1) The function f  is said to be quasiconvex at x∈S if f { λx + (1 - λ)x ≤ max { f ( x ), f (x)}  

for each λ∈(0,1) and each x∈S and the function f  is said to be quasiconvex over S if 

f { λx 1 + (1 - λ)x 2 }≤ max { f (x 1 ), f (x 2 )}  for each λ∈(0,1) and for each x 1
 and x 2∈S

(2) The function f  is said to be pseuoconvex at x∈S  if Δf ( x ) t (x- x ) ≥ 0 for x∈S  implies 

that f (x )≥ f ( x ) and, the function over f  is said to be pseudoconvex over S if 

Δf ( x ) t (x- x ) ≥ 0 for each x 1
 and x 2∈S implies that f (x 2 )≥ f (x 1 )

Proposition 5：Let S is be a nonempty open convex set in En and let f ：S→ E 1
 be 

differentiable on S. If f  is a convex function over S, then f is a 

pseuoconvex function over S.

Proof：Let f (x 2 ) < f (x 1 ) By differentiability of f  at x 1
, for each λ∈(0,1) we have

f {λx 2 + (1-λ)x 1}- f (x 1 ) = λΔ f (x 1 )
t(x 2-x 1 ) + λ | |x 2-x 1 || a (x 1 ;λ (x 2-x 1 ) )

where a (x 1 ;λ (x 2-x 1 ) ) → 0 as λ → 0 . By convexity of f , we have

f {λx 2 + (1-λ)x 1} ≤ λf (x 1 ) + (1-λ)f (x 1 ) < f (x 1 )

Hence the above equation implies that 

λΔf (x 1 )
t (x 2-x 1 ) + λ | |x 2-x 1 || a (x 1 ;λ (x 2-x 1 ) ) < 0

Dividing by λ and letting λ → 0  we god Δf (x 1 )
t (x 2- x 1 ) < 0
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Proposition 6：Let S be a nonempty open convex set in En and let f ：S→ E 1
 be a 

pseudoconvex function over S. Then S is quasiconvex function over S.

Proof：Let f (x 2 ) < f (x 1 ) and suppose that f (x 3 ) > f (x 1 ) for some x 3 = λx 1+(1-λ)x 2, 

λ> 0. Then f (x 2 ) < f (x 3 ). By pseudoconvexity of f , (x 2- x 3)
tΔf(x 3 ) < 0 and hence 

(x 2- x 1)
tΔf(x 3 ) < 0.

Therefore, there exists a convex combination x 4
 of x 1

 and x 3
 such that (x 2- x 1)

tΔf(x 4 ) < 0 

and f (x 4 ) < f (x 3 ). It follows that f (x 1 ) < f (x 4 ). By pseudoconvexity of f , we have 

(x 1-x 4)
tΔf(x 4 ) < 0. That is, (x 2- x 1)

tΔf(x 4 ) > 0. This is a contradiction.

Remark：The converse of Proposition 6 is not always true. Let f (x) = -x
2 , 0≤x≤1. Then f  

is a quasiconvex function. Take x 1= 0  and x 2=
1
2
. Then Δf(x 1 )

t
(x 2-x 1) ≥ 0 but 

f (x 1 )≥f (x 2 ). Thus f  is not a pseudoconvex function.

Now, we investigate the necessary optimality conditions for unconstrained problems.

Proposition 7：Suppose that f：En→E 1
 is differentiable at x . If there is a vector d such 

that Δf ( x)d < 0, then there exists δ > 0  such that f ( x+λd) < f ( x) for each 

λ∈(0,δ)

Poof：By differentiability of f  at x we must have

f ( x+λd) = f ( x) + λΔf ( x) td+ λ | | d || a ( x ; λd)

where a( x ; λd ) → 0  as λ → 0

Rearranging the terms and dividing by λ we get 

f ( x+λd)-f ( x)
λ = Δf ( x) td+ || d || a ( x ; λd)

Since Δf ( x) td <  0 and a ( x ; λd) → 0 as λ → 0, there exists a δ >  0 such that 

Δf ( x) td+ || d || a ( x ; λd) < 0 for all λ∈(0, δ)

Corollary 1：Suppose that f：En→E 1
 is differentiable at x . If there is a vector d such that 

Δf ( x) td > 0, there exists δ > 0  such that f ( x+λd) > f ( x) for each λ∈(0,δ)

Corollary 2：Suppose that f ： En→E 1
 is differentiable at x . If x is a local minimum, then 

Δf ( x) = 0.

Proof：Suppose that Δf ( x)≠0 and let d = -Δ f ( x) then Δf ( x) td = || Δf ( x) t || 2 <0. 
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By Proposition 7, there is a δ > 0  such that f ( x+λd) < f ( x) for λ∈(0,δ). This is a 

contradiction to the assumption that x  is a local minimum. Hence Δf ( x) = 0

Remark：The above condition uses the gradient vector whose components are the first partial of 

f . Hence it is a called a first-order necessary condition. 

Proposition 8：Suppose that f：En→E 1
 is differentiable at x . If x  is a local minimum, then 

Δf ( x) = 0 and H(x)  is positive semidefinite.

Proof：Consider an arbitrary direction d. Form differentiability of f  at x  we have equation (1).

(1) f ( x+λd)= f ( x) + λΔf ( x) td+
1
2

λ 2
d
t
H(x)d+ λ 2

| | d ||
2
a ( x ; λd)

where a( x ; λd ) → 0  as λ→0 . Since x  is a local minimum, from Corollary 2, we have 

Δf ( x) = 0

Rearranging the terms in equation (1) and dividing by λ 2 we get

(2) f ( x+λd) - f ( x)
λ 2 =

1
2

λ 2
d
t
H(x)d+ || d ||

2
a ( x ; λd)

Since x  is a local minimum, f ( x+λd) ≥ f ( x) for sufficiently small λ . From equation (2), 

is thus clear that 1
2

λ 2
d
t
H(x)d+ || d ||

2
a ( x ; λd) ≥ 0 for sufficiently small λ . By taking the 

limit as λ → 0 , it follows that dtH(x)d ≥ 0

Hence H(x)  is positive semidefinite.

Now we give a sufficient optimality condition for unconstrained problems.

Proposition 9：Let f：En→E 1
 be pseudoconvexity at x .

If Δf ( x) = 0, then x  is a grobal minimum.

Proof：Since Δf ( x) = 0, we have Δf ( x) t (x- x) = 0 for each x ∈ En . By pseudoconvexity of 

f  at x , it then follows that f ( x) ≤ f (x) for each x ∈ En .

We develop a necessary optimality condition for the problem to minimize f (x) subject to 

g(x)≤0 and x∈S where g ： En→E 1

Definition 4：Let S be a nonempty set in En and let x ∈ S. The cone of feasible direction 

of S at x, denote by D , is given by

D=[d ; d≠0 and x + λd∈ S for all λ ∈ (0, δ) for some δ > 0]
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Proposition 10：Consider the problem to minimize f (x)  subject to x∈ S  where f：En→E 1
 

and S  is a nonempty set in En . Suppose that f  is differentiable at a point 

x∈ S . If x  is a local optimal solution, then F 0∩ D=∅ where 

F 0= [d ; Δf ( x) td < 0 ] and D  is the cone of feasible direction of S  at x

Proof：Suppose that there exist a vector d ∈ F 0∩ D

By Propositon 7, there exists a δ
1 >  0 such that f ( x+λd) < f ( x) for each λ∈(0,δ

1). 

Futhermore, by Definition 4, there exists a δ
2 >  0 such that x + λd∈ S for each 

λ ∈ (0, δ
2). This is a contradiction to the face that x  is a local optimal solution.

In proposition 10, D  is not necessarily defined in terms of the gradients of the functions 

involved. So, we define an open cone G 0
 defined in terms of the gradients of the 

binding constraints at x , such that G 0 <D.

Proposition 11：Let g：En→E 1
 for i=1,2,⋅⋅⋅,m and x bea feasible point, and let 

I=[ i ; gi ( x) = 0 ]. furthermore, suppose that f  and g i for i∈ I  are 

differentiable at x and g i for i ∉ I are continuous at x.

If x is a local optimal solution, then F 0∩ G 0= 0 , where

F 0= [d ; Δf ( x) td < 0 ] and G 0= [d ; Δg ( x) td < 0 ]  for each i ∈ I.

Proof：By Propositon 10, we have only to show that, G 0⊂D  where D  is the cone of feasible 

direction of the feasible region at x.

Let d ∈ G 0
 Since x∈X  and X is open, there exists a δ

1 > 0  such that 

(3) x + λd∈X for λ∈(0,δ
1)

Also, since g i( x) < 0 and g i is continuous at x for i∉ I, there exists a δ
2 > 0  

such that

(4) gi( x + λd) < 0  for λ∈(0,δ
2) and for i∉ I. Since Δg ( x) td < 0  for each  i∈ I 

and by ropositon 7, there exists a δ
3 > 0  such that

(5) gi( x + λd) < 0  for λ∈(0,δ
3) and for i∈ I

By equations (3), (4) and (5), the points of the form x + λd are feasible to the 

problem p for each λ∈(0,δ
3) where δ= min [δ 1,

δ
2, δ

3]

Thus d ∈ D .

By using the result of Proposition 11, We derive Fritz John condition.
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Proposition 12：(Fritz John condition)：Let X be a nonempty open set in En and 

f：En→E 1
 and g：En→E 1

 for i=1,2,⋅⋅⋅,m

Consider the Problem p  to minimize f (x)  subject to x ∈ X  and 

g i(x ) ≤ 0  for i=1,2,⋅⋅⋅,m. Let x be a feasible solution, and let 

I={ i ：gi( x) = 0} .

Furthermore, suppose that f  and g i for i∈ I are differentiable at x and 

that g i for i∉ I are continuous at x. If x locally solves Problem p , then 

there exists scalars u 0
 and u 1

 for i∈ I, such that

Δf ( x)+ ∑
i∈I
u iΔg i ( x)= 0

u 0,u i≥ 0, for i∈ I  and (u 0, uI)≠(0, 0)

where uI is the vector whose components are u i for i∈ I

Furthermore, if g i for i∉ I are differentiable at x, the Fritz John 

conditions can be written in the following equivalent form：

u 0
Δf ( x)+∑

m

i∈I
u iΔg i ( x)= 0

uig i( x)=0, u 0, u i ≥ 0  for i=1,2,⋅⋅⋅,m

(u 0, u i )≠(0, 0)

where u  is he vector whose components are u i for i=1,2,⋅⋅⋅,m

Proof：Since x locally solves Problem p , by Proposition 11, there is no vector d such that 

Δf ( x) td < 0  and Δg ( x) td < 0  for each i∈ I. Let A be the matrix whose rows are 

Δf ( x) t and Δg ( x) t for i∈ I. The optimality condition of Proposition 11 is then 

equivalent to the statement that the system Atd < 0 has no solution.

Hence by Proposition 4, there exists s nonzero vector p≥0  such that Atp = 0. Denoting the 

components of p  by u 0
 and u i for i∈ I. the first part of the result follows.

The second part of the result is proved by letting ui=0 for i∉ I

Remark:：In the Fritz John conditions, the scalars u 0
 and u i for i=1,2,⋅⋅⋅,m are called 

Lagrangian multupliers.

The condition uig i ( x)= 0  for i=1,2,⋅⋅⋅,m is called the complementary slackness 

condition.
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Ⅲ. Kuhn - Tucker Conditions

With a mild additional assumption Fritz John condition reduces to Kuhn - Tucker optimality 

condition

Theorem 1 (Kuhn - Tucker Necessary Conditions)：Let X be a nonempty open set in En and let 

f：En→E 1
 and g：En→E 1

 for i=1,2,⋅⋅⋅,m. Consider the Problem p  to minimize f (x) 

subject to x∈X and g i≤ 0 for i=1,2,⋅⋅⋅,m. Let x be a feasible solution, and let 

I={ i ：gi( x) = 0} , Suppose that f  and gi for i∈ I  are differentiable at x and g i for i∉ I  

are continuous at x.

Futhermore, suppose that g i ( x)  for i∈ I  are linearly independent. If x locally solves problem 

p , then Δf ( x)+ ∑
i∈I
u iΔg i ( x)= 0 .

where u i≥ 0 for i∈ I

In addition to the above assumptions, g i for i∉ I  is also differntiable at x, then the Kuhn - 

Tucker conditions could be written in the following equivalent form：

Δf ( x)+∑
m

i∈I
u iΔg i ( x) =  0

where u ig i ( x )=0  for i=1,2,⋅⋅⋅,m and for ui≥0 for i=1,2,⋅⋅⋅,m

Proof：By Fritz John condition, there exist scalar u 0
 and u î for i∈ I , not all equal to zero, 

such that

u 0
Δf ( x)+ ∑

i∈I
u iΔg i ( x)= 0

where u 0
, u î≤0 for i∈ I . Suppose that u 0 = 0. Then ∑

i∈I
u iΔg i ( x)= 0  where u î≥0 

for i∈ I  are linearly independent. By letting ui=
u î
u 0

 the first part of the theorem is 

proved.

The second part of the theorem is proved by letting u 1 = 0 for i∈ I . Under some convex 

conditions, Kuhn-tucker conditions are also sufficient for optimality. This is shown below.

Theorem 2 (Kuhn-Tucker Sufficient Condition)：Let X be a nonempty open set in En , 

f：En→E 1
 and g：En→E 1

 for i=1,2,⋅⋅⋅,m. Consider the Problem p  to minimize f (x)  
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subject to x∈X and g i≤ 0 for i=1,2,⋅⋅⋅,m. Let x be a feasible solution and let 

I={ i：gi( x) = 0} . Suppose that f  is pseudoconvex at x and that g i is quasiconvex and 

differentiable at x for each i∈ I . Futhermore, suppose that there exist nonnegative scalars u i for 

i∈ I  such that Δf ( x)+∑
m

i∈I
u iΔg i ( x)= 0 . Then x is a global optimal solution to Problem p .

Proof：Let x be a feasible solution to Problem p . Then, for each i∈ I , g i ( x) ≤ g i ( x) . Since 

g i ( x) ≤ 0 and g i ( x) = 0. By quasiconvexity of g i , we have

gi( x+λ(x- x) )=gi (λx+(1-λ )x)≤max {gi (x),gi ( x)}

= g i ( x )  for all λ∈(0, 1)

This implies that gi does not increase by moving from x  along the direction x- x . By 

Corollary 1, we must have Δg i ( x)
t (x- x)≤0 . Multiplying by u i and summing over I , we get

( ∑
i∈I
u i Δg i ( x)

t
) (x- x)≤0

But since Δf ( x)+ ∑
i∈I
u i Δg i ( x)= 0 , it follows that  Δf ( x) t (x- x)≥0 . Then, by psedudo- 

convexity of f  at x , we must have f ( x)≥f ( x).

Now we show an example.

Consider the following problem：

Minimize (X 1-
9
4
) 2+(x 2-2) 2

Subject to x 2-x
2
1≥0

x 1+x 2≤6

x 1≥0, x 2≥0

The above statements are equivalent to the next statements：

Minimize f (x)= (X 1-
9
4
) 2+(x 2-2) 2

Subject to g 1 (x)= x 2-x
2
1≤0

g 2(x)= x 1+x 2-6≤0
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The feasible region is sketched in figure

x 2

6

3

0 3 6 x 1

We can show that Kuhn-Tucker optimality conditions are true at the point x=(
3
2
,
9
4
)
t .

Let I={ i ：g i ( x)=0}= {1}.

Note that f  and gi for i =  1, 2 , 3, 4 are differentiable at x  Clearly, ∇g i ( x)  for i∈I is 

linearly independent. Note that ∇f ( x)
t
=(-

3
2
,
1
2
)
t and ∇g 1(x)

t=(3,-1) . Hence 

∇f ( x)+
1
2
∇g 1( x)=0. Thus u 1=

1
2
, u 2 = 0, u 3 = 0 and u 4 = 0 satisfy the Kuhn-Tucker 

condition.
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<국문초록>

적절한 해결책의 특징으로서의 쿤-터커 조건

심 경 섭

본 논문의 목적은 적당한 볼록성의 가정하에서 쿤-터커 조건들을 찾아보는 것이다. 본 논

문은 세 부분으로 나누어 졌는데, 논증을 발전시키는 기본 개념과 성향, 그리고 Fritz John 의 

조건을 증명해 보려는 것이다. 마지막으로 주요이론을 도출하여 그 이론들이 어떻게 적용되

어지고 설명되어 지는지를 예를 들어서 설명하는 것이다.


