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1. Introduction

The uncapacitated facility location problem (UFLP) is the problem of locating uncapacitated
potential facilities so as to minimize the total cost for satisfying given demands. Among various _
discrete location problems, the UFLP seems to receive the most attention due to its practical and
theoretical significance. The UFLP has close similarities to other classes of real world problems.
Moreover, any mixed 0-1 programming methods can be applied to this problem due to its simple
structure. An excellent survey on this subject can be found in Krarup and Pruzan’s work.")

As are-usual for mixed 0-1 programming problems, branch and bound algorithms are used for
solving the UFLP. The computational efficiency of such branch and bound algorithms depends
greatly upon how quickly it generates sharp lower bounds. Of many algorithms proposed for the
UFLP, the dual-based solution method which was developed by Bilde and Krarup?), and Erlenkot-
ter>) independently, has been widely accepted as the most powerful procedure. The success of
this method rests on the following two points. First, this method is based on the tight UFLP
formulation whose linear programming (LP) relaxation provides strong lower bounds. Second, this-
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1) J. Krarup and P.M. Pruzan, “The simple plant location problem: survey and synthesis,”” European Journal-
of Operatjonal Research 12 (1983) pp. 36-81. : 3 . )
2) O. Bilde and J. Krarup, “Sharp lower bounds and efficient algorithms for the simple plant location prob-
lem,” Ann. Discrete Math. 1 (1977) pp.-79-97. S P
3) D. Erlenkotter, “A dualbased procedure for uncapacitated facility location,” Operations Resedrch 26
(1978) pp. 992-1009.
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approach doesn’t solve the LP relaxation exactly but obtains feasible solutions to its LP dual using
an efficient heuristic. These dual feasible solutions, even if not optimal, still provide sharp lower
bounds for the UFLP. '

Although this method provides sharp lower bounds, there still exists the integrality gap which
sometimes significantly increases the computational burden of the method. One possible way of
reducing the integrality gap is to use valid inequalities, or cuts. Recently, a number of researches
have shown that this approach is successful for solving some mixed integer programming problems.
This has motivated some researchers to study on valid inequalities and facets for the UFLP, How-
ever, there hasn’t been reported any attempt at incorporating valid inequalities for solving the
UFLP yet.

This fact can be explained by the following reason. The usual approach of implementing
valid inequalities takes the following steps: (i) solve the LP relaxation of the current problem, (ii)
find a valid inequality which cuts off the LP solution, and (iii) add this inequality to the current
problem and retum to step (i). This approach requires the exact optimal solution of a large scale
LP and that of an additional 0-1 integer problem to identify a valid inequality cutting off a given
fractional solution at each step. However, such an approach might even deteriorate the whole

* computational efficiency, becuase of the special structure of the UFLP, Especially, the success of
the dual-based heuristic makes this conjecture more credible and explains why there has been
- reported no attempt at implementing valid inequalities for the UFLP.%)

Thus, valid inequalities can’t be successfully implemented, until an efficient procedure dif-

‘ferent from the usual one can be accommodated enough to overcome the difficulties described
~above. In this paper, we present an algorithm of incorporating valid inequalities for solving the
'UFLP Heuristics of identifying the violated valid inequalities and solving the successive LP’s
augmented with the inequalities will be developed to minimize the computational difficulties
involved. The outline of our solution procedure is as follows. We filst use the dual-based pro-
cedure for obtaining the initial lower and upper bounds of the UFLP. If there exists the gap
between them we generate valid inequalities to reduce the gap by using the dual feasible solution
obtained through the dual-based procedure. If the above procedure fails to yield an optimal
solution, we initiate a branch and bound procedure. A number of sample problems will be tested
to get an information on the efficiency of our algorithm.

II. Model Formulation and Valid Inequalities

The UFLP can be ’formulatgd as the following mixed integer programming problem:

(P) mn 2 2 cljx1]+ Z fiy;, )
iep JGD iEp

4) ibid., pp. 992-1009.
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s.t. .Exij=], jeD, )
P
fyi—xij>0, i€ P,jED, 3)
x;j>0, i€ P,jeD, @
yj=0orl, ie€P, (5)

where y; is 1 if facility i is established and 0 otherwise; Xjj is the fraction of customer j’s demand
supplied from facility i; f; (> 0) is the fixed cost for establishing facility i, and cjj is the variable
cost for supplying all of customer j’s demand from facility i,

Recently, several researchers have studied on valid inequalities and facets of (P) by using the
fact than (P) can be transformed into the following set packing problem. In this formulation,
¥i means

(SP) max £ 2 (6;—ci)xi+Sfim— Bfi— 2 6;,

eTjep | W GW jen’
st. 2 Xjj<1, j€D,
i€P

Vi+xij<1, i€P,jED,
xij,‘y‘i=00r 1, ieP,jeD.

1—yj and Gj is a sufficiently large weight. for substituting inequalities for equalities.

For exposition brevity, we use the following notation. Let G = (N, E) be the intersection
graph associated with (SP). For I8 C P and JS CD, letS= (si) be 15[ x 13%] 0-1 matrix with no
zero column and no zero row and G be the subgraph of G induced by the vertices ypforie IS, and
Xjj, for i € I and j € 3Ssuch that $ij = 1. And let 8 (GS) be the covering number of GS defined as
the minimum number of plants i € I necessary to cover all destinations j € JS usin} arcs of G¥.

Cho et al. show that the inequality

jefs JEEIS Sl]xl] +i£IS(1 _ yi) < |IS) + 1JS] — ¢t 6)
is a valid inequality for (P) if and only if t < B (G9).%) Cho et al. also derive the necessary and
sufficient condition for (6) to be a facet.®) Cornuejols and Thizy and Guignard derived two parti-
 cular families of facets of F(SP) which have the form of (6).” ’

5) D.C. Cho, E.L. Johnson, M.W. Padberg and M.R.Rao, “On the uncapacitated plant location problem I:
Valid inequalities and facets,” Mathematics of Operations Research 8 (1983) pp. 579-589.

6) D.C. Cho, M.W.:Padberg and M.R. Rao, “On the uncapacitated plant location problem II: Facts and- Lifting
theorems,” Mathematics of Operations Research 8 (1983) pp. 590-621.

7) G. Cornuejols and J.M, Thizy, “Facets of the location polytope,” Mathematical Programming 23 (1982)
pp. 70-74. ' - . ‘ '
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IIl. Implementation of Valid Inequalities.

In this section, in order to overcome the computational difficulties discussed before, we
develop an alternative procedure for implementing valid inequalities which doesn’t solve the LP
relaxation exactly, but instead uses feasible solutions to its LP dual as in the dual-based pro-

cedure.®

1. Cut Generation

Consider the case when inequality (6) is appended to the LP relaxation of (P) where (5) is
replaced by y; >0, i€P.
Then the dual of the LP relaxation of (P) with constraint.(6) is given as:

max 2 vi— (D8It

i
s.t. vy — Wij — SijY < Cijs iEIS,jETS,
Vj”‘wijgcij» ieP—-ISorj€D -5,

s wity<f, Q€D
ied J !
jéDwij <f;, i€P- IS, | g
wij, 7 >0, i€P,jED,

where Vi Wij and v are the dual variables corresponding to (2), (3) and (6) respectively.
For any feasible choice of vj, and v, each variable wjj may be set at its lowest possible value as

_ {max (0, Vi — Cjj — sij'y), fiens,jels,
Yij = 1 max (0, vj— cij), otherwise,

which will maintain the feasibility while keeping the objective value as high as possible. Then the
dual problem may be replaced by the following condensed form:

(DA) max I vj— (%1t ; @)
. j€D -
s.t. T max (0, v; — ¢ — sjjy) + = max 0, v; — c) + y<fj, i €IS, 8
& (e I L S B i ®)
jéDmax ©,vj— o) < fi, i€P-1I5 | ©)
vy=20. (10)

Remark 1. If y=0,(DA)is equivalent to the so-called condensed dual, denoted by (D).

8) Erlenkotter, op. cit., pp- 992-1009.
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Using the special structure of the dual, they develop an efficient heuristic which provides near
optimal solutions to it. Now we consider a way of still using its special structure when im-
plementing valid inequalities to solve (P). Let zg () be the optimal objective value of (DA)
for any fixed ¥ > 0. ,

Remark 2. Suppose that any optimal solution of the LP relaxation of (P) has fractional value,
and that we have a valid inequality (6) cutting off that optimal fractional solution. Then if
(DA) assumes the LP dual of (P) with the cut, it is easily shown that there exists some v >0
such that z3 (y) > zq (0). And the inequality strictly holds if the LP fractional solution is the
unique optimal one,

Now we consider how to select an inequality (6) which provides a better dual objective valie
when being added to the LP relaxation. This is to determine a matrix S whose corresponding
inequality (6) provides the optimal objective value of (DA) greater than 24 (0).

Proposition 1. There exists some 7 > 0 such that z4 (y) > zq (0), if and only if

24(Ay) — 24(0) S
Ay

23 (0Y)= lim (11)
d (01) e

Proof. Itis obvious from the fact that zq (7) is a piecewise linear corfcave function.

(11) holds if z4 (Ay) > 24 (0) for Ay >0 and sufficiently small. Thus our strategy is to select a
cut whose corresponding (DA) provides zq (A7) > 24 (0) for sﬁfﬁciently small Ay, -
Throughout the process, exactly speaking, the approximate of 23 () is'cons,idered, since only
the dual feasible solutions, instead of the optimal one, are generated. However, even if approximate
is used, the whole process gives ever increasing lower bounds of (P). In addition, when calculating
the approximate of zq (7), we impose the following restriction on the search of v-vector: v:’s are
to be kept non-decreasing as v increases. This restriction is for the computational efficiency of the
whole solution procedure, because it simplifies not only the cut identification but also the succes-

sive computation of the augmented LP’s. Under this restriction, it is easily resolved by solving a :

specially constructed problem to check whether (11) holds or not for-a given ¢ut. "
- For any feasible solution {vi}of (D), et IS (i) ={j €J5 : vj > cjj and sij = 1} for i €15,and
define . ..

SLi=f; — 2 max (0, v; — c;),iE€P,
L leD i~ Sij

;{ Lifv> cij; fori €P,jE€D,
aj: = v o
0, otherwise, ) :
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L, if SL; >0, for i EP,
bi={ ISG)I - 1, if SL= 0 fori €5,
0, if SLj=0, fori €P - I8,

where L is a sufficiently large weight not less than IDI. Consider the following problem:

z(v) =max 2 oj
j€D
s.t. Z a;max (0,0, — ki) + T ajo;<bj,i€P, (12)
EJs 1 )y jG.D-Js 1% i
9 >0,jED,
where fori €I8and j € JS,

kij = { 1, iij = Gjj and jj = 1,
0, otherwise.

Theorem 1. Suppose that we have an optimal solution {vj" } of (D),\i.e., (DA) with ¥ =0 and an
inequality (6). Let {oj+ } be an optimal solution of the problem (12) corresponding to that in-
equality and {v*j’}. If

z(v") > (1181 - 1), (13)
then zg (0%) >0.

Proof. Note that |J8| — t > 0 since t < § (GS) < I3I. By the definition of aj; and bj there exists

some y+ > 0 such that {vj" + 0j+ 41} is feasible to (DA). Since not all oj’"s are zero,

—24(0)= = oyt — (ISI—t)yt
zd(r*) —24(0) jeDv, 7 —( n

= {zg(v") — (11— )}y* >0.

Since (12) has a highly specialized structure, an efficient heuristic for finding a feasible solution
satisfying (13) can be developed and will be shown later. '

2. The Braﬁch and Bound Algorithm

" Based on the observations discussed in the preceding section, we develop two procedures, one
for identifying a valid inequality and the other for successively solving an LP augmented by the
identified inequality. The two procedures also use the dual feasible solutions of the LP relaxation
as in the dual-based method.

We first solve (D), the condensed dual of (P) using Erlenkotter’s dual-based heuristic and
obtain a feasible solution of (D) and an integer feasible solution of (P). If there exists a gap
between them, we initiate the cut implementation procedure. Cuts are selected and implemented
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only when (DA) corresponding to a selected cut provides a dual feasible solution having better
objective than that of the current feasible solution of (D), and thus the implementation of valid
inequalities guarantees the monotone improvement of the dual objective value. Furthermore, cuts
are successively so generated that the J¥'s corresponding to the obtained cuts never overlap. This
makes it possible to easily obtain the feasible solutions for the LP and of (P) with more than one
cut. Our procedure is heuristic and thus more elaborated method can be devised for generating
and implementing cuts. However, as discussed, a simple approach seems to be adequate consider-
ing that the additional effort might sharply increase the computing time of the whole process.

The first part of our algorithm is a procedure for selecting an inequality (6) whose resulting
(DA) gives positive zg (0+). The ideal way of identifying a cut is to directly select an S such that
the corresponding value of zg (v) is greater than US| — t. However, if possible, this might require
the computation of a large scale 0-] integer problem even more complex than (P). Thus our cut
identification method, based on this observation, consists of the following three steps: (i) select
a candidate matrix S, (i) calculate t, the lower bound of § (GS), and (ii) solve (12) corresponding
to the inequality (6) associated with S to check whether (13) hold§.

We develop a procedure for selecting a possible S using the special structure of (12). We first
select JS C D, and then determine IS C P and sij for i € IS and j € JS. Consider the following
observations.

Remark 3. Given an optimal solution {Vj+ } of (D) and an inequality (6), the following pro-
perties hold.

(i) Let I*={i€P: SL;=0}, then the constraints of (12) for i €P — I* are redundant.

Gi) If vjF > Gjj for some i €1* — IS, any feasible solution of (12) satisfies o, = 0.

(iii) If DS(E)I <1 for some i € IS, any feasible solution of (12).satisfies 0 = 0, for all j €D with

Vi < Gij,

Based on (i) and (ii) and the definition of JX(i), IS C P and sjj for i €1° and j €8 are con-
structed by the following strategy to maintain b;’s as large as possible.

8= {icl*: Vj>cij for some j € J$}, (14)
l ifv.> vy

e R - @5

L {0, otherwise. ' '( )

Then the remaining problem is how to select JS, because itkdirectly affects the value of z'd (0+)
through z; (v), US1 and t. Although the relation among them is difficult to clearly 1tennze we
develop the following scheme of constructing JSto reflect this relation as well as poss1b1e o

(C1) USG)|I=2forallicls,
(C2) I15G)1> 2 for allj € I8 where I3(G) = {i€1I5: v >clJ and slj—l}

(C1) is for considering Remark 3-(iii). And (C2) is based on the conjecture that any] ED_J5
such that vj > Gjj for only a single i € IS has little chance to have a positive effect on z4 () when
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being added to JS. This conjecture is due to the following reason: if JS is augmented by some
j € D — JS such that Yi > % for only a single i € IS, |J8] increases by one and z(v) can increase
at most by one since bl increases by one, and the covering number is unlikely to increase especially
under (C1). It is interesting that (C1) and (C2) are also the conditions which Cho et al. has shown
to be satisfied by a facetial inequality of (P).

After S is determined, we need to caluculate the B(GS) or its lower bound. A(GS) can be
obtained by solving the following problem,

(G5 =max {2 z: 2 sij2{ > 1,jEJ$,ii=00r 1,i€ ). (16)
: i€’ el

This problem is a set covering problem and several solution approaches have been proposed for it.
However, we calculate a lower bourid of theYptimal objective value of (16) by using a dual feasible
solution of its LP relaxation. This seems to be adequate when considering the computational
efficiency of the whole solution procedure. Moreover, the lower bounds of §(Gs) can also be used
for constructing an inequality (6) and these lower bounds are made to be tight using the integral
condition of B(G%).

The LP relaxation of (16) where the constraints z; = 0 or 1 is replaced by z; > 0 can be
dualized as follows:

maxgezl pj:jGZ:JSsijpj<l,i€lS,pj>0,j€Js}. a7n
We generate a feasible set {p J} through a simple heuristic and obtain a lower bound of §(GS) by
letting t = [EJEJS P .} where [a] means the smallest integer not less than a. The proposed heuristic
is as follows:

() INITIALIZE :  pj=min mn 1 | forallj€ss,
IE-IS z jer 8ij
8ij

(i) Foreachj€J : UPDATEP;¢ 'pj +minjers (1 — Zigys pj).'

An inequality (6) can be made more successful by the lifting procedure. One possible lifting is
to increase the value of some Sij with zero to one as far as the resulting inequality is valid. This
can be done using a feasible solutlon {PJ} For a given feasible choice of PJ, we reset sj; ’s with zero
value to one as many as possible without violating the feasibility of (17). Cons1der1ng the
structure of (12), the pnonty for selecting sIJ s for,resettmg is given to the ones with vj = = Cij We
choose sij’s with Vj = cjj as the candidates for lifting, since sij’s with Vi > cjj are already set to be 1.

Now we develop an algorithm to solve problem (12). By Remark 3-(i) and the strategy of
determining S, problem (12) can be reforfnulated as the following problem with smaller size.

max E:Oj
. jep

st. 2 3jjmax{0, 05— kgt + 2 ajo; < US@)I- Li€L, (18)
i ,
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3z asijoj<0, i€I* -1, 020, j€D.
j€D-J
Problem (18) is still large, since even relatively simple real problems have a large number of
customers. We avoidAcomputational difficulties by allowing only a limited number of Oj’s to have a
positive value. Let JS={j€D - JS: Yi > Gjj for only a single i € IS and Yi < Gjj for any other i}.
The variables to be allowed to increase are cj?s corresponding to j € JS U 3

The reasoning for this selectlon can be partly explained by the following observation. Bet-
ween the LP relaxation of (P) and its condensed dual the following complementary slackness
relationships exist.

Yi [fi—— _éDmax{O, Vj - cl]}] =0, i€P (19)
(yvi - Xjj) max , vi— °ij) =0, i£P,jED, (20)

The duality gap between the optimal integer solution and the optimal dual solution of the relaxed
LP is usually due to the violation of (20). Consider the case when an inequality (6) is added to
(P). Then (20) changes to the following condition.

(yi — x) max (0, vj — cj5 — 557) =0, j E IS, €IS,
(yi~xij)max(0,v]-—cij)=0,iEP-Isorj€D—Js,

Since g determines the increase of Vi desirable solution {oj} is such that its resulting solution of
(DA) reduces the duality gap. The increase of Vi forj € 13 doesn’t deteriorate the complementary
slackness violations. Moreover, under our policy for selecting S, the increase of Y for j €IS is off-
set by that of . 1J8|is usually small compared with ID|, aid thus once aj’s forj € D — JS are
fixed, (18) reduces to a problem with conformable size.

Then the following heuristic is developed to solve (18):

INITIALIZE: =0 forj€D and b; = I3%(i)| — 1 fori € IS.
ASSIGN 0 = min (1, bi/Ejejs 1ij),j €75, UPDATE bjeb; — EjeDoj, i€l
ASSIGN 0= minjeys (by/ Bje]s sij),j €J5; UPDATE b b; — EjEDO", i€,
FOR eachj G;s: UPDATE 0j¢= 0 + lrgllrslbl and b; ¢« b; — ij%j» i€,

. sij=1 e
Note that the whole process explained so far is for the case that only a s_ingl‘e_ineq'_uali_ty is,
added to (P). If (P) is augmented by more than one inequality, the LP dual of the problem is
slightly different from (DA). Considering that the main idea developed in this section is still valid
for a case where more than one inequality exists and that cuts are implemented successively one
by one, the slightly modified version of our algorithm can be used for this case.  However, this not
only involves many computational difficulties in carrying each step but also requires excessive
memory. Therefore we generate cuts that the J¥s corresponding to the obtained cuts don’t
overlap. Thus even in a case with more than one cut, the whole process proposed here is directly

i
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used except that D is replaced by D — ¥ Jsk where S is the matrix corresponding the kth
identified cut.

If we find a feasible solution {oj} which gives the objective value greater than {I81 — t, we
augment this inequality with (P) and solve (DA) to obtain a better lower bound. Otherwise we
proceed to select another inequality. As already described, if an inequality (6) satisfies the first
case, there exists some 7y > 0 such that {vJ +0 7,7} is feasible to (DA) corresponding to this
inequality and it gives a better objective value than that of the current solution v; of (D). The only
needed thing is to calculate a maximal value of 7 as far as it satisfies the feasxble condition of
(DA).

Suppose we have a feasible solution {vj+} of (D), and {oj’} of (18), then it is sufficient to find
a maximal value of vy §atisfying the following condition:

ng('Y):fi‘.z' max (0, v} + of'y — cjj = 57)
_Jé"smax(o f+ofy—ap-v>0,1€h,
SLs(’Y fi— Z max(OV 'Y )
=fi- Z A i .
- 2 max (0,9 +ofy—c) —vy>0,i¢ P

Using the fact that SLS('y) is a piecewise linear concave function and that SL?’(O) = 0, we computer
v = max{'ylSLs('y)}O iens).

Now we briefly describe how the procedure of implementing valid inequalities proposed here
is incorporated into a branch and bound solution method for solving (P). We first solve the LP
relaxation of (P) by directly using Erlenkotter’s dual-based method which consists of the dual
ascent and adjustment procedure. These two procedures provide a feasible solution of (D).
Erlenkotter also proposes a primal procedure to construct an integer feasible solution using an
obtained dual feasible solution. However we adopt a slightly different primal procedure since his
method makes a computational difficulty when cuts are added to (P). We first select I* asa
candidate open facility set as in Erlenkotter’s method, but use a ‘drop heuristic to determine a
final open facility set.

These dual and primal procedures provide lower and upper bounds of (P). If there exists a gap
between them, we select a valid inequality (6) using a current dual feasible solution. As described,
cuts are generated that correspondmg J¥s never overlap. This procedure is repeated until the
procedure finds an optimal solution or until no more columns remain for constructing a cut. If
the whole procedure fails to yield an optimal solution, we proceed to a branch and bound phase.

—.144"—f
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IV. Computational Results

The solution procedure was coded in FORTRAN IV and run on CYBER 170-845. We have
conducted computational experiments on a wide variety of problems some of which are appeared
in the literature. However, since the first part of our solution method is the same as Erlenkotter’s
method, here are shown the problems for which his method fails to provide an optimal solution
without branching. :

The problems with dimensions of (5 x 8) and (33 x 33) are the ones used in Erlenkotter?),
and the problems with dimensions of (8 x 30), (8 x 40) and (12 x 30) are constructed by extract-
ing the first period data from the Roodman-Schwarz’s dynamic problems.' ®? The remaining prob-
lems with dimensions of (10 x 40) and (30 x 60) are randomly generated.

First, relatively smaller problems were tested to compare the lower bounds obtained by im- .
plementing cuts generated here with those without cuts, the optimal integer objective value, and
the LP optimal value. Since our algorithm generates cuts so that the J¥s corresponding to the
generated cuts are not overlapped, the number of generated cuts depends on the size of the prob-
lem solved. However, Table 1 shows that even a small number of cuts effectively provide im-
proved lower bounds.

Table 1. Comparison of Lower Bounds.

Lower bound
Problem size LP opt. Integer opt.
without cut withcut Number of cuts .
5x8 1540 1565 1 1547.5 1565
5x8 1560 1570 1 1565 1580
5x8 1590 1597 1 1597 - 1615
5x8 1630 1725 1 1671.5 1725
8 x 30 19359 19380 1 19359 | 19533
8x 30 19409 19409 1 19409 19633 -
8x30 19823 19835 1 19834 20133
8 x 40 24077 24117 2 24101 24243
8 x 40 24692 24705 2 24699 24923
12x30 7939 7950 3 7943 8180
12x30 8076 8088 2 8080 8330
12x30 8157 8171 3 8171 8380

9) ibid., pp. 992-1009. ' o
10) G.M. Roodman and L.B. Schwarz, “Optimal and heuristic facility phase out strategies,” AIIE Transactions -

7 (1975) pp. 177-184.
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As already mentioned, there exists the trade-off relation between the quality of an obtained
Jower bound and the computational load needed to get it. To show the efficiency of our algorithm
‘in terms of the whole computation, several problems including some large ones are tested and CPU
times are compared with those for DUALOC (Erlenkotter’s dual-based algorithm) known to date

as the ultimatum. See Table 2.

Table 2. Computational Results.

E R /& =

Ours DUALOC

Problem
size lower Number  Number CPU lower Number  CPU
bound of cuts of nodes (secs.) bound of nodes  (secs.)
8x 30 19380 2 N 5 0.107 19359 5 0.162
8x 30 19409 1 5 0.122 19409 7 0.157
8x30 19479 3 5 0.134 19471 11 0.202
8x 30 19835 2 9 0.241 19823 7 0.191
8x30 21365 3 7 0.284 20962 11 0.425
8 x 40 24705 5 5 0.208 24692 9 0.418
8 x40 24117 3 7 0.162 24077 7 0.131
8x40 24495 1 3 0.107 24485 7 0.371
8 x40 25068 2 9 0.223 25056 11 0.410
8x 40 25144 10 15 0.616 25209 7 0.582
12x 30 7514 7 9 0.367 7514 13 0.465
12x30 7950 6 5 0.249 7939 15 0.613
12x30 8088 6 7 0.297 8076 13 0.454
12x 30 8171 9 7 0.391 8157 9 0.377
12x 30 8452 7 11 0.434 8429 13 0.549
"10x 40 7702 11 7 0.627 7695 9 0.632
10x 40 7922 3 5 0.276 7905 - 5 0.309
33x33 20313 2 S 0.208 20340 5 0.225
33x33 21163 1 3 0.086 21099 5 0.140
30x 60 8688 13 11 1.240 8677 13 1.498
30x 60 8754 . 11 11 1.195 8748 11 1.461
30.x 60 8936 "9 9 0914 8809 13 1.597
30x 60 8866 9 "9 0.874 8857 15 1.764
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V. Conclusions

In this paper, we have presented an algorithm of incorporating valid inequalities for solving
the UFLP. Although there have been reported the successful results of implementing valid in-
equalities for solving some combinatorial problems, this approach seems to be hardly applicable to
the UFLP. This is mainly due to the fact that the special structure of the UFLP makes the tradi-
tional cut implementation method inefficient since that method can’t take advantage of the
inherent structure of the UFLP.

As an effort to overcome the obstacle described above we have developed several heuristics of
identifying the violated valid inequalities and so]vixig the successive linear programming relaxation
augmented with the inequalities in order to fully exploit the structural properties of the UFLP.
Those heuristics are constructed to yse the dual feasible solutions of the LP relaxation as in the
dual-based procedure which is known to be the best one for solving the UFLP.

Although the proposed algorithm has been proved to be efficient through computing eXi:eri-
ments with a number of sample problems, the additional improvement seems to be still possible.
The improvement may be achieved by constructing some devices to more easily identify valid
inequalities in good quality.
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