Social Security, Medicare and Health Capital in A Recursive General Equilibrium Model

Hong Chong Cho

Economics, Dankook University

June 14, 2012

Introduction •000			

Introduction

- Main Issue
 - Fast growing numbers of old population in the U.S. incurs huge fiscal pressures, in particular, on Social Security and Medicare
- This paper tries to include explicitly
 - changing demographic structure of population
 - health status of households, respectively, single and couple
 - labor, consumption and medical expenditure decisions affected through idiosyncratic health shocks
- Model features are
 - Heterogeneous Agents in terms of age, education, health, marriage status
 - CGE(Computable General Equilibrium)
 - OLG(Overlapping generation)

Introduction 0000			

What's new?

- Explicitly include health capital accumulation depending on household formation
- Comprehensively consider health insurance market structure
- Calibrate the current U.S. Economy and simulate it until 2080
- Compare the baseline model with some counterfactural experiments
- Quantify the effect of demographic changes and health cost inflation on Social Security and Medicare in a general setting

Overview of Results

- Calibration with parameters and simulation with a baseline scenario,
 - Baseline model: dependency ratio ¹ from 20% to 32.2% + 60% increase in health care cost
 - capital-output ratio: $3.0 \rightarrow 3.15$
 - Social Security benefit/output: $4.5\% \rightarrow 7.0\%$
 - \blacktriangleright social assistance program/output: $1\% \rightarrow 5\%$
 - labor taxation: $23\% \rightarrow 36\%$
 - average hours worked: 12% increase
 - \blacktriangleright when Social Security benefit is fixed at 4.5%, labor taxation:23% \rightarrow 32%

1 # of population aged 65 and over

between 20-64

Social Security, Medicare and Health Capital in A Recursive General Equilibrium Model

Literature Review

- Social Security
 - Auerbach and Kotlikoff(1987): first paper of social security in OLG
 - ▶ Huggett and Ventura(1999): heterogeneous agent model
 - Domeiji and Floden(2006): to model international capital flows
- Medicare
 - ▶ Finkelstein(2007): to model the supply of health services
 - French and Jones(2007): to include health shocks and medical costs in a life cycle model
 - Attanasio, Kitao, Violante(2008): how to finance Medicare
- Health in utility function
 - Suen(2006): consider technological progress in medical industry
 - Borgor et al.(2008): representative model and many details in health conditions
 - Jung and Tran(2011): HSA(Health saving account)

Economic Environment

- Demographics
 - ► J overlapping generations with growth rate g
 - ▶ *j*: age
 - working starts at age j = 1 and retire at $j = j_R$
 - e: educational attainment, η_e: fraction of type e in each cohort
 - h: health capital
 - $\varepsilon_{e,j}\omega_e(h)$: labor productivity

Health Capital Formation

Single

$$h' = \zeta(m) + (1 - \delta_h)h + u$$

- ζ : health production function
- m: medical spending
- δ_h : health depreciation rate
- u: idiosyncratic health shock
- ▶ $\overline{\Theta}_{e,j}(u)$: distribution, $\Theta_{e,j}(u', u)$: transition probability
- $\overline{\Lambda}_{e,j}^{h}(h)$: distribution, $\Lambda_{e,j}^{h}(h',h)$: transition probability
- $\prod_{e,j}(h)$: survival rate, $\mathbf{h} = \{h_1, \dots, h_{j-1}\}$: health history, $\prod_{e,j}(\mathbf{h})$: probability of surviving until age j for a new born of type e

Health Capital Formation

Couple

$$h'=f(h'_h,h'_w)$$

$$h_c' = \mathbf{Z_c}m_c + (1 - \mathbf{D_c})h_c + u_c$$

- *h_c*: household health status vector consisting of husband(*h_h* and wife(*h_w*)
- *m_c*: medical spending vector
- Z_c: health production matrix
- D_c: health depreciation matrix
- ► *u_c*: idiosyncratic health shock vector
- $\Theta_{ce,j}(u'_c, u_c)$: transition probability

Family Structure

• Couple households have decreased 10% since 1980 and vise versa are single households

Health Correlation Between Couples

• Correlation decreases as period of living together lasts

Model		Appendix
000000000000		

Preference

Household Utility

$$U = \mathbb{E}_0 \sum_{j=1}^J \prod_j^e (\mathbf{h}) \beta^{j-1} u(c_j, 1 - n_j)$$

 β : the discount factor, *c*: consumption, *n* hours worked.

Health Insurance(1)

m: medical expenditure, q: relative price of medical services to consumption,

- Private Insurance
 - κ^ω: a fraction of working age medical expenditure covered by ESHI(Employer-Sponsored Health Insurance)
 - \blacktriangleright $\kappa^{ret}:$ a fraction of retirement age medical expenditure covered by ESHI
 - premium

 $\begin{cases} 0 & \text{if no insurance, } i = 0 \\ p^{\omega} & \text{if ESHI only working stage, } i = 1 \\ p^{\omega} + \xi^{\omega} p^{ret} \text{ working stage }, \\ (1 - \bar{\xi}^{ret}) p^{ret} \text{ retirement} & \text{if ESHI throughout life, } i = 2 \end{cases}$

 $\xi^{\omega} \colon$ firm's fraction in working and $\xi^{\overline{r}et} \colon$ firm's fraction in retirement

Health Insurance(2)

Medicare

- κ^{med} : coverage by Medicare
- ▶ *p^{med}*: premium
- ϕ^{med} : administrative cost by Medicare
- Social Assistance Programs: Medicaid, Supplemental Security Income
 - ► *c*: minimum consumption level
 - tr: transfer when disposal asset fall below \bar{c}

Commodities, goods and input markets

Three markets are competitive

- Final goods used for private consumption, public consumption, and investments
- Medical services
- Labor services

Model oooooooooooooo		

Aggregate production function

$$Y = ZF(K, N)$$

Resource constraint

$$Y = C + K' - (1 - \delta)K + qM + G$$

M: aggregate expenditures on medical services (including administrative costs associated with employer based health insurance and Medicare)

Model 00000000000000		

Fiscal Policy

Five types of government fiscal policies: general public consumption *G*, Medicare expenses, Social assistance payments, Social security benefits, and services to public debt

Social Security

$$b_e =
ho_e rac{1}{j_R - 1} \sum_{j=1}^{j_R - 1} ar{y}_e(j)$$

 $\bar{y}_e(j)$: average earnings of households of type e and age j, ρ_e : benefit fraction of the average earnings of type e in the cohort

► Government supplies one-period risk-free debt *D* which carry the return *r* as physical capital.

Fiscal Policy(revenues)

Revenues

- τ^{ω} : labor income tax
- τ^{c} : consumption tax
- ▶ \(\tau^r\): capital tax
- *p^{med}*: Medicare premium
- accidental bequest

(τ^{c} , τ^{r} , p^{med} , ρ_{e} , D, G): are parameters, letting τ^{ω} determined in the model

	Recursive Competitive General Equilibrium ●00000000		

Working stage

$$V(e, i, j, h, x) = \max_{c, n} \{ u(c, 1 - n) + \beta \prod_{e, j} (h) \mathbb{E} V(e, i, j + 1, h', x') \}$$

subject to

$$\begin{aligned} x' &= [1 + (1 - \tau')r][x - (1 + \tau^c)c + tr] \\ &+ (1 - \tau^\omega)[\omega\varepsilon_{e,j}\omega_e(h)n - d(i)] - (1 - \kappa^\omega \cdot I_{\{i>0\}})qm \\ d &= \begin{cases} 0 & \text{if } i = 0 \\ p^\omega & \text{if } i = 1 \\ p^\omega + \varepsilon^\omega p^{ret} & \text{if } i = 2 \end{cases} \\ tr &= \max\{0, (1 + \tau^c)\overline{c} - x\} \\ c &\leq \frac{x + tr}{1 + \tau^c} \\ h' &\sim \Lambda^h_{e,j}(h', h) \text{ and } m \sim \Lambda^m_{j,h}(m) \end{aligned}$$

	Recursive Competitive General Equilibrium		Appendix
	0000000		

Working stage

- x: disposable resources
- ► I_{·}: indicator function
- d(i): health insurance premium
- $a \equiv x (1 \tau^c)c + tr$: household's asset holdings

	Recursive Competitive General Equilibrium 00●000000		

Retirement stage

$$V_r(e, i, j, h, x) = \max_c \{u(c, 1) + \beta \prod_{e, j} (h) \mathbb{E} V_r(e, i, j + 1, h', x')\}$$

$$\begin{array}{lll} x' &=& [1+(1-\tau^{r})r][x-(1+\tau^{c})c+tr]\\ &+b_{e}-[1-\kappa^{med}-\kappa^{ret}\cdot I_{\{i=2\}}]qm\\ &-p^{med}-(1-\bar{\xi}^{ret})p^{ret}\cdot I_{\{i=2\}}\\ tr &=& \max\{0,(1+\tau^{c})\bar{c}-x\}\\ c &\leq& \frac{x+tr}{1+\tau^{c}}\\ h' &\sim& \Lambda^{h}_{e,i}(h',h) \mbox{ and } m\sim\Lambda^{m}_{i,h}(m) \end{array}$$

	Recursive Competitive General Equilibrium		Appendix
	0000000		

A Recursive Competitive General Equilibrium

- Given survival rates $\{\prod_{e,j}(h)\}$,
- Fiscal variables $\{G, D, \rho_e, \tau^c, \tau^r, tr(s)\}$, and
- Relative price of medical services q,
- A recursive competitive equilibrium is a set of:
 - 1. value function V(s),
 - 2. decision rules for the households $\{c(s), n(s)\}$
 - 3. firm choices $\{K, N\}$,
 - 4. insurance premia $\{p^{\omega}, p^{ret}\},\$
 - 5. labor income tax rate τ^{ω} , and
 - 6. a measure of households μ such that:

	Recursive Competitive General Equilibrium		Appendix
	00000000		

Households, Firms, and Labor Markets

- Working households choose optimally consumption and labor supply by solving problem, and retired households choose optimally consumption by solving problem
- 2. Firms maximizing profits by setting their marginal productivity equal to factor prices

$$w = ZF_N(K, N)$$

$$r + \delta = ZF_K(K, N)$$

3. The labor market clears

$$N = \int_{\mathcal{S}|j < j_R} \varepsilon_{e,j} \omega_e(h) n(s) d\mu$$

	Recursive Competitive General Equilibrium		Appendix
	00000000		

Asset, Health Insurance Markets

4. The asset market clears

$${\cal K}+{\cal D}=\int_{\cal S}{\sf a}(s)d\mu$$

5. The private insurance market for working households, and retired households clears

$$p^{\omega} \int_{\mathcal{S}|j < j_{R}, i \in \{1,2\}} d\mu = (1+\phi)\kappa^{\omega}q \int_{\mathcal{S}|j < j_{R}, i \in \{1,2\}} m\lambda_{j,h}^{m}(m)d\mu$$
$$p^{ret} \int_{\mathcal{S}|j \ge j_{R}, i=2} d\mu = (1+\phi)\kappa^{ret}q \int_{\mathcal{S}|j \ge j_{R}, i=2} m\lambda_{j,h}^{m}(m)d\mu$$

with all insurance companies making zero profits for the two separate pools

	Recursive Competitive General Equilibrium		Appendix
	00000000		

Final Good Market

6. The final good market clears

$$ZF(K, N) = C + \delta K + qM + G$$

where

$$C = \int_{\mathcal{S}} c(s) d\mu$$
 and $M = \int_{\mathcal{S}} m(s) d\mu + \Phi$

and Φ represents the total administrative costs associated with the employer-based insurance and Medicare.

Government Budget Constraint

7. The government budget constraint satisfies

$$\tau^{c}C + \tau^{\omega}\omega N + \tau^{r}r\int_{\mathcal{S}}a(s)d\mu + p^{med}\int_{\mathcal{S}\mid j \ge j_{R}}d\mu + \int_{\mathcal{S}}[1 - \prod_{e,j}(h)]xd\mu$$
$$= G + rD + \int_{\mathcal{S}}tr(x)d\mu + (1 - \phi^{med})\kappa^{med}q\int_{\mathcal{S}\mid j \ge j_{R}}m\lambda_{j,h}^{m}(m)d\mu + \int_{\mathcal{S}\mid j \ge j_{R}}b_{e}d\mu$$

	Recursive Competitive General Equilibrium		Appendix
	00000000		

Measure and Transition Function

8. For all sets $S \equiv (E \times I \times J \times H \times X) \in \Sigma_S$, the measure μ satisfies

$$\mu(\mathsf{S}) = \int_{\mathcal{S}} Q(s,\mathsf{S}) d\mu$$

where, for j > 1, the transition function Q is defined as

$$Q(s,\mathsf{S}) = I\{e \in \mathsf{E}, i \in \mathsf{I}, j+1 \in \mathsf{J}\}\Lambda^h_{e,j}(h' \in \mathsf{H}, h)\mathsf{Pr}\{x' \in \mathsf{X}|s\}\prod_{e,j}(h)$$

		Calibration		
0000	000000000000000000000000000000000000000	0000000	0000	

Demographics

- Household enter at age 20(j = 1)
- die at age 100(j = 81) or less than health standard
- e = 1: high education, e = 0: low education, η_e : 0.30
- mandatory retirement at age $65(j_R = 46)$
- survival rate by SSA

	Calibration	Appendix
	000000	

Survival Rate

Figure 1: Left-panel: survival rates by age for the college graduates in 2005 (data) and 2080 (projected). Right panel: Ratio of survival rates of college graduates by age in 2005 and 2080.

	Calibration 00●0000	

Preference and Technology

$$u(c, 1-n) = \frac{c^{1-\gamma}}{1-\gamma} + \chi \frac{(1-n)^{1-\theta}}{1-\theta}$$

- ▶ $\gamma = 2$ (Attanasio(1999)), $\chi = 2.028$, market work=0.33
- ► ((1 n)/n)/θ = 0.5: intertemporal labor supply elasticity implies θ = 4(Browning, Hansen, and Heckman (1999))
- $\beta = 0.9955$ so that wealth to GDP ratio: 3.4

$$Y_t = Z K_t^{\alpha} L_t^{1-\alpha}$$

- ▶ α = 0.33
- ▶ δ = 0.06

Social Security, Medicare and Health Capital in A Recursive General Equilibrium Model

	Calibration	Appendix
	0000000	

Labor productivity

	Calibration 0000●00	

Health Status

Medical Expenditure Panel Survey(MEPS)

	Low Education			High Education		
		good	bad		good	bad
20-29	good	0.95	0.04	good	0.98	0.01
	bad	0.41	0.58	bad	0.58	0.42
30-39	good	0.94	0.05	good	0.97	0.02
	bad	0.32	0.67	bad	0.31	0.68
40-49	good	0.92	0.07	good	0.95	0.04
	bad	0.20	0.79	bad	0.29	0.70
50-64	good	0.87	0.12	good	0.94	0.53
	bad	0.16	0.83	bad	0.22	0.77
65+	good	0.86	0.13	good	0.89	0.10
	bad	0.13	0.86	bad	0.20	0.79

	Calibration	Appendix
	0000000	

Medical Expenditure

MEPS(\$ in 2004)					
		good heal	th		
	1-60%	61-95%	96-100%	average	
20-29	153	1,875	10,192	1,253	
30-39	321	2,762	13,482	1,833	
40-49	453	2,928	19,606	2,277	
50-65	1,002	5,124	22,609	3,525	
65+	2,047	8,990	33,190	6,034	
		bad healt	h		
	1-60%	61-95%	96-100%	average	
20-29	484	4,453	23,484	3,023	
30-39	758	6,027	40,605	4,595	
40-49	1,262	8,243	42,861	5,785	
50-65	2,363	12,399	59,730	8,744	
65+	3,946	16,194	60,556	11,063	

	Calibration 000000●	

Health Insurance and Government

- $\kappa^{\omega} = 0.70$, $\kappa^{ret} = 0.30$, $\kappa^{med} = 0.50$: coverage rate
- Medicare cost: 2.4% of GDP
- $p^{med} = 0.0224$: Medicare premium
- ► $\bar{\xi}^{ret} = 0.6$: retiree's insurance paid by the employer (Buchmueller (2006))
- $\phi^{med} = 0.1$: administrative cost
- $au^{r} = 0.4$,(by Mendoza(1994)) $au^{c} = 0.057$, $au^{\omega} = 0.23$
- ▶ social security replacement rate: $\rho_e = 0.4$ for $e = 0, \rho_e = 0.3$ for e = 1
- D = 0.4: public debt to GDP
- $\bar{c} = 0.1$: minimum consumption
- $\delta_h = 0.81(\text{Suen}(2006))$,

Baseline Simulation

- Calibrate and simulate the model in order to analyze basic changes in 2080
 - Baseline model: dependency ratio from 20% to 32.2% + 60% increase in health care cost
 - capital-output ratio: $3.0 \rightarrow 3.15$
 - Social Security benefit/output: $4.5\% \rightarrow 7.0\%$
 - Medicare costs/output: $2.4\% \rightarrow 6.3\%$
 - social assistance program/output: $1\% \rightarrow 5\%$
 - labor taxation: $23\% \rightarrow 36\%$
 - average hours worked: 12% increase
 - \blacktriangleright when Social Security benefit is fixed at 4.5%, labor taxation:23% \rightarrow 32%

Sensitivity Analysis

- Health care cost varies 1.0%, 1.3%, 1.9%
 - 0.1% of excess health care annual inflation leads to a rise of 1% of labor income tax rate
 - saving falls due to lack of self-insurance
 - \blacktriangleright social assistance doubles when $1.6\% \rightarrow 1.9\%$
- Population growth
 - ▶ 0% growth rate=d.r.=41.3%: labor tax 41%
 - ▶ 1.4% growth rate=d.r.=25.1%: labor tax 32%

Limitation and Extension

- Incomplete information+Optimal Taxation
- Sophisticate household structures
 - structure of household formation like # of kids
 - structural changes in single and non-single distribution
- Financial market
- Open market in medical industry or financial market

		Appendix ●

Appendix

- $s \equiv \{e, i, j, h, x\}$: the individual state vector
- ▶ $e \in \mathcal{E}$, $i \in \mathcal{I} = \{0, 1, 2\}$, $j \in \mathcal{J} = \{1, 2, \dots, J\}$, $h \in \mathcal{H}$, $x \in \mathcal{X} = [\underline{x}, \overline{x}]$
- $\mathcal{B}_{\mathcal{H}}$, $\mathcal{B}_{\mathcal{X}}$: Borel Sigma-algebras of \mathcal{H} and \mathcal{X}
- $P(\mathcal{E}) P(\mathcal{I})$ and $P(\mathcal{J})$ be the power set of \mathcal{E}, \mathcal{I} and \mathcal{J}
- The state space: $S \equiv \mathcal{E} \times \mathcal{I} \times \mathcal{J} \times \mathcal{H} \times \mathcal{X}$
- $\Sigma_{\mathcal{S}}$: sigma algebra on \mathcal{S} defined
- ► as $\Sigma_{\mathcal{S}} \equiv P(\mathcal{E}) \otimes P(\mathcal{I}) \otimes P(\mathcal{J}) \otimes \mathcal{B}_{\mathcal{H}} \otimes \mathcal{B}_{\mathcal{X}}$
- (S, Σ_S) : the corresponding measurable space
- μ : the stationary measure of households on (S, Σ_S)